
Accurate Isosurface Interpolation with Hermite Data

Simon Fuhrmann
TU Darmstadt

Michael Kazhdan
Johns Hopkins University

Michael Goesele
TU Darmstadt

Abstract

In this work we study the interpolation problem in con-
touring methods such as Marching Cubes. Traditionally,
linear interpolation is used to define the position of an
isovertex along a zero-crossing edge, which is a suitable
approach if the underlying implicit function is (approxi-
mately) piecewise linear along each edge. Non-linear im-
plicit functions, however, are frequently encountered and
linear interpolation leads to inaccurate isosurfaces with
visible reconstruction artifacts. We instead utilize the gra-
dient of the implicit function to generate more accurate iso-
surfaces by means of Hermite interpolation techniques. We
propose and compare several interpolation methods and
demonstrate clear quality improvements by using higher or-
der interpolants. We further show the effectiveness of the
approach even when Hermite data is not available and gra-
dients are approximated using finite differences.

Copyright 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

1. Introduction

Implicit functions are a popular surface representation
for many reconstruction algorithms. As opposed to explicit
representations, implicit functions are agnostic to topology
and more easily support blending between shapes, boolean
queries, and morphological operations such as erosion and
dilation. Contouring of implicit functions, i.e., extracting
an explicit surface from the implicit representation, is an
important application in computer graphics.

An implicit function F : R3 → R associates a scalar
value F (x) to every point in space x. The function implic-
itly defines a surface S as the level-set S = {x | F (x) = d}
with respect to the isovalue d. The surface is guaranteed
to be manifold if d is not a singular value of the function
(i.e., the gradient∇F does not vanish on the level-set). The
level-set S is also called the isosurface of F . Without loss
of generality, we assume d = 0 and note that choosing a
different d is equivalent to subtracting d from F . A popu-
lar example for an implicit function is the signed distance
function (SDF), which describes for every point in space the
distance to the closest point on the shape, with the sign of
the function indicating whether the point is interior or exte-

–

+

–

– –

–

+

–
+

–

+

–

– –

–

+

–
+

–

+

–

– –

–

+

–

Figure 1. Marching Cubes: Four edges of the cube contain a sign
change (left), interpolation of isovertices (middle) and the final
polygonal surface (right).

rior to the surface. The surface is then defined as the zero
level-set of the implicit function.

An implicit function is often represented on a regular
lattice, i.e., sampled at uniformly spaced positions, and
Marching Cubes [15] is often the contouring algorithm of
choice. As a regular sampling of F is unsuitable for the
representation of large or multi-scale shapes, octrees and
tetrahedralizations have been used, and the isosurface is ob-
tained with more general algorithms [1, 19, 4, 24, 11].

For these representations, the implicit function is sam-
pled at discrete positions and the isovertex positions are de-
termined by interpolation along edges, and triangulations
connecting the isovertices are computed per cell, see Fig-
ure 1. Traditionally, this interpolation is performed using
linear approximation, i.e., by finding the zero-crossing of a
linear function along each edge. If the implicit function is
actually non-linear along the edges, the interpolated isover-
tex positions poorly estimate the actual position of the zero-
crossing along the edge, see Figure 2. Depending on the
type of implicit function, these inaccuracies often mani-
fest themselves in structured patterns on the final surface,
which can appear as ringing or undulating artifacts. This is
caused by alternating between over- and underestimation of
the correct zero-crossing.

A simple example of a non-linear implicit function for
the sphere with radius r is Fq(x) = x2+y2+z2−r2. Con-
touring Fq with linear interpolation leads to a larger recon-
struction error than contouring the signed distance function
F`(x) =

√
x2 + y2 + z2− r, although both functions have

the same zero level-set. Note that near the isosurface, the
signed distance function has small second derivatives and
is approximately linear. Figure 3 visualizes this reconstruc-

1



Figure 2. For non-linear functions (black), the linear interpolant
(green) is often a poor fit (left). Interpolation with higher-order
functions leads to much higher accuracy (right).

Figure 3. Visualization of the reconstruction error of the quadratic
function Fq (left) and the signed distance function F` (right) on a
64× 64× 64 voxel grid. Red corresponds to a larger error.

tion error. While both reconstructions have high-frequency
errors due to discretization, reconstruction of Fq exhibits
considerably more pronounced low-frequency ringing arti-
facts around the axes of the coordinate system.

A piecewise linear approximation to a smooth function
has an approximation error that depends on the sampling
density of the function. The approximation error decreases
as O(h2) with the sample spacing h, i.e., if the sampling
spacing is halved, the approximation error is reduced by 1/4.
This quadratic behavior suggests that increasing the sam-
pling density will be effective in reducing these artifacts.
However, even in the cases where the continuous implicit
function is available for re-sampling, such a refinement has
a dramatic impact on memory consumption and runtime.

In this work we argue that contouring non-linear implicit
functions requires additional data in order to obtain accu-
rate, artifact-free results for high quality reconstruction. We
advocate the use of Hermite data, i.e., utilizing the implicit
function gradient ∇F (x) in addition to the values F (x) at
the sampling positions x. Depending on the application,
∇F can be analytically computed or estimated using finite
differences. We present several formulations for incorpo-
rating the derivatives in the interpolation scheme and eval-
uate the quality of the obtained results on higher-order im-
plicit functions. Further, we incorporate all interpolation
methods in Poisson Surface Reconstruction (PSR) [9, 10]
and the more recent Floating Scale Surface Reconstruction
(FSSR) [5], and analyze the impact of the different formula-
tions on the reconstruction accuracy. We demonstrate clear

surface quality improvements on synthetic and real-world
data compared to linear interpolation. This improvement
has motivated the incorporation of one Hermite interpola-
tion technique in the early PSR code [18]. This work is
the first to compare the different non-linear interpolation
techniques and evaluate the practical implications on sur-
face quality.

2. Related Work
The most popular method for contouring implicit func-

tions is the Marching Cubes algorithm [15] which uses lin-
ear interpolation to place isovertices along the zero-crossing
edges of a regular lattice and then defines a triangulation by
connecting the isovertices within each cell, see Figure 1.

Although initially proposed for regular hexahedral grids,
the Marching Cubes algorithm has been extended to adap-
tive space partitions including octrees [1, 19, 24, 23, 11]
and (graded) tetrahedralizations of space [4]. To define the
implicit surface, all these approaches require estimating the
position of the isovertex along a zero-crossing edge, and
linear interpolation is the technique most commonly used.

Many extensions of Marching Cubes have been proposed
[20], including the reconstruction of bicubic spline surfaces
[7] or continuous quadratic implicit functions for visualiza-
tion purposes [17]. In contrast, our method does not com-
pute a higher-order surface representation. It uses similar
ideas for the purpose of reducing reconstruction artifacts,
but is restricted to a one dimensional interpolation problem
along the zero-crossing edges.

Hermite data has been used in the dual contouring
method by Ju et al. [8], by Manson and Schaefer [16],
and the primal/dual hybrid approach by Kobbelt et al. [12].
They use Hermite data to construct planes that are tangent to
the surface and minimize a quadratic error function (QEF)
to solve for an isovertex position in the interior of the cell.
The minimizer is often a poor estimate of the actual func-
tion, and may require additional function evaluations [16].
There are numerical difficulties in solving the linear system
of equations induced by the QEFs, e.g., the minimizer is
not guaranteed to be in the interior of the cell (see [22, 8]
for more details). These methods are different in that they
focus on improving the reconstruction of sharp features and
edges in the implicit function, not on more accurate isosur-
face interpolation.

In Lempitsky’s work [14] a smooth implicit function
is reconstructed from a binary volume by solving a con-
strained optimization problem minimizing the function cur-
vature. This differs from our approach in that we do not
use binary input and perform more accurate interpolation
“on the fly” without having to solve a global optimization
problem. As in Lempitsky’s work, we also guarantee cor-
rectness in that we only place an isovertex along an edge
whose endpoints have opposite signs.



3. Hermite Interpolation
The interpolation problem in primal contouring methods

is one-dimensional because we are only interested in the
root of the implicit function F along an edge e. We call the
restriction of F to this one-dimensional subspace f = F

∣∣
e.

To perform Hermite contouring, the values F and the gradi-
ent∇F must be available at the sampling positions. For in-
terpolation, however, we are only interested in the derivative
f ′ = ∇F

∣∣
e at the sampling positions along the direction of

the edge e. If the edges are axis-aligned, the derivative f ′

is just the corresponding component of the gradient ∇F .
Otherwise, the directional gradient along e can be obtained
with the dot product: f ′ = 〈∇F, e〉/‖e‖2.

An edge e is represented by its two endpoints x0, x1,
which are the sampling positions of F . To formulate the
interpolation in a uniform setting, we scale the interval be-
tween x0, x1 to [0, 1]. This requires scaling the derivatives
∇F by a factor of ‖x0−x1‖. Given the function values and
derivatives

f(0) = v0 f ′(0) = d0

f(1) = v1 f ′(1) = d1
(1)

we describe several ways for using Hermite interpolation to
obtain a more accurate isovertex position along the edge e.
In particular, we investigate cubic interpolation as well as
two different types of quadratic interpolation.

3.1. Third Order Polynomial

A cubic function has four degrees of freedom, so it seems
natural to use the two value and two derivative constraints
to obtain a unique solution for the polynomial coefficients

p(x) = a0 + a1x+ a2x
2 + a3x

3

p′(x) = a1 + 2a2x+ 3a3x
2.

(2)

Substituting the constraints from (1) into (2) leads to the
linear system of equations (see, for example [13])

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3



a0
a1
a2
a3

 =


v0
v1
d0
d1

 (3)

with the unique solution

a0 = v0 a2 = 3v1 − 3v0 − 2d0 − d1

a1 = d0 a3 = 2v0 − 2v1 + d0 + d1.
(4)

Although straightforward, a cubic polynomial can have up
to three real roots whose location and count may be sensi-
tive to small perturbations of the function coefficients, see
Figure 4. To uniquely define the position of an isovertex,
we observe that there must be an odd number of roots along
a zero-crossing edge, and we always use the “middle” root.

Figure 4. Different cases for the roots of a cubic function: One root
(left), three roots counting multiplicity (middle), and three distinct
roots (right).

This corresponds to using the single root in the case of lin-
ear and quadratic interpolation, and is also well-defined for
higher-order interpolants.

3.2. Second Order Polynomials

Using a second order interpolant is the correct choice if
the implicit function is known to be quadratic. Examples
include PSR, where the implicit function is represented as
a linear combination of second-order B-splines (or if the
implicit function is regularized to have small third deriva-
tive). Since a quadratic function has three degrees of free-
dom, substituting the four constraints from (1) into (2) with
a3 = 0 yields an overdetermined linear system of equations
of form Ax = b

1 0 0
1 1 1
0 1 0
0 1 2


a0
a1
a2

 =


v0
v1
d0
d1

 . (5)

The coefficient matrix A has full rank, so there is no exact
solution in general.

Least-Squares Solution: We can solve the linear system
in (5) in a least-squares fashion using the normal equation,
multiplying with Aᵀ on the left to get:

AᵀAx = Aᵀb ⇒ x = (AᵀA)−1Aᵀb. (6)

The matrix (AᵀA)−1Aᵀ can be precomputed and the coef-
ficients can be hard-coded as in (4). However, the least-
squares solution produces a polynomial p(x) where the con-
straints on the values are not exactly met. This can lead
to the situation where, although f(x) has a zero-crossing
along the edge, p(x) does not. For this reason we will not
further consider this solution.

Least-Squares Derivatives: Instead, to guarantee that
p(x) always has a root along the edge if f(x) also has a root,
the quadratic function must interpolate the values of the im-
plicit function p(0) = v0 and p(1) = v1. We now discuss a
solution that is least-squares optimal for the derivatives, and
interpolates the function values. For the value constraints,
we have according to (5):

a0 = v0

a0 + a1 + a2 = v1.
(7)



The derivatives give rise to the constraints which must be
met in a least-squares sense

a1 = d0

a1 + 2a2 = d1
(8)

which leads to the minimization problem

argmin
a1,a2

: (a1 − d0)
2 + (a1 + 2a2 − d1)

2. (9)

From (7) we know that a2 = v1 − a1 − v0, and substituting
a2 in (9) yields a least-squares problem in a single variable:

argmin
a1

: (a1 − d0)
2 + (a1 − 2v1 + 2v0 + d1)

2 (10)

Setting the derivative of (10) to zero and solving for a1 leads
to the polynomial coefficients

a0 = v0

a1 =
d0 − d1

2
+ v1 − v0

a2 =
d1 − d0

2
.

(11)

Examining the coefficient a2, we see that the second order
term vanishes if the implicit function is locally linear, i.e.,
if d0 = d1.

Third Order Elimination: Finally, we discuss two pos-
sible second-order solutions that can be obtained from the
third order solution in (4) by eliminating the third order co-
efficient a3. This can be achieved by introducing an addi-
tional degree of freedom for the derivatives.

Scaling the derivatives by s and setting a3 to zero gives

2v0 − 2v1 + s · d0 + s · d1 = 0

s =
2v1 − 2v0
d0 + d1

.
(12)

If the derivatives d0 and d1 in (4) are scaled by s, the
cubic term vanishes. However, the solution in (12) be-
comes unstable if the derivatives cancel each other out, i.e.,
d0 + d1 ≈ 0. Whether this instability causes actual prob-
lems depends on the properties of the implicit function. For
example, this is the method implemented in the PSR code
for interpolating the indicator function, which has a steep
gradient in the vicinity of the isosurface and is unlikely to
have partial derivatives with opposite signs.

An alternative approach to scaling is to introduce an ad-
ditive degree of freedom o

2v0 − 2v1 + (d0 + o) + (d1 + o) = 0

o =
1

2
(2v1 − 2v0 − d0 − d1).

(13)

This solution has an interesting property. When adding the
offset o to the derivatives d0 and d1 in (4), it can be shown
that this solution is equivalent to the solution in (11).

4. Algebraic Surfaces

We now compare the interpolation methods on synthe-
sized, non-linear implicit functions. A “ground truth” iso-
surface is generated by sampling a 512 × 512 × 512 voxel
grid and using linear interpolation to define the isovertex
positions on zero-crossing edges. The test meshes are then
extracted from a 64 × 64 × 64 voxel grid and compared to
the ground truth. The following interpolation methods are
evaluated:

• LINEAR: Linear interpolation without derivatives

• SCALING: The quadratic method in (12) that scales
the derivatives to eliminate the third order term

• LSDERIV: The quadratic method in (11) and (13) that
interpolates the function values and least-squares fits
the derivatives

• CUBIC: The cubic polynomial fit in (4)

For comparison to the ground truth, we use Metro [3], a tool
for measuring distances between triangle meshes. Color-
coding is used to visualize the distance between the ground
truth and the test mesh directly on the surface, with red in-
dicating larger distances. We also compare the impact of
using the analytically computed gradient∇F with a central
differences approximation of∇F . Note that, when using fi-
nite differences in conjunction with cubic interpolation, one
obtains the standard Catmull-Rom interpolant [2].

Smooth Box: The implicit function of the Smooth Box
dataset is given by

F (x) = x4 + y4 + z4 − 1. (14)

This is a fourth-order function and cannot be exactly recon-
structed with any of the interpolation methods in Section 3.
Figure 5 visualizes the reconstruction error for all interpo-
lation methods. Table 1 lists the maximum, mean and root-
mean-square (RMS) distances to the ground truth mesh for
the analytic and finite differences gradient.

Genus-2: The implicit function for the Genus-2 dataset is
a fifth-order polynomial with mixed terms

F (x) = 2y(y2 − 3x2)(1− z2)

+ (x2 + y2)2 − (9z2 − 1)(1− z2).
(15)

The error is visualized in Figure 6 and distances to the
ground truth are given in Table 2. For both datasets the re-
construction errors of the non-linear interpolants are barely
distinguishable and give nearly identical results regardless
of whether analytic gradients or finite-differences are used.



(a) (b) (c) (d) (e)

Figure 5. Smooth Box: (a) Ground truth, (b) LINEAR interpolation with color-coded reconstruction errors, (c) SCALING interpolation, (d)
LSDERIV interpolation, and (e) CUBIC interpolation. All gradients have been computed analytically.

(a) (b) (c) (d) (e)

Figure 6. Genus-2: (a) Ground truth, (b) LINEAR interpolation, (c) SCALING interpolation with analytic gradients, (d) LSDERIV inter-
polation with analytic gradients, and (e) LSDERIV interpolation with approximate finite differences gradients.

Analytic ∇F max mean RMS

LINEAR 5.200640 2.527520 2.655661
SCALING 4.576201 0.914086 1.225579
LSDERIV 4.576010 0.912602 1.224503
CUBIC 4.577743 0.912709 1.225184

Approx. ∇F max mean RMS

SCALING 4.576851 0.916040 1.227008
LSDERIV 4.575684 0.911629 1.223793
CUBIC 4.581211 0.912659 1.225978

Table 1. Smooth Box: Distances to the ground truth mesh with
analytic ∇F (top) and finite differences approximation (bottom).
The distances are scaled for readability (factor 104).

Analytic ∇F max mean RMS

LINEAR 2.0846366 0.4342808 0.5301991
SCALING 2.1002761 0.1964645 0.2915423
LSDERIV 2.0975643 0.1957446 0.2908659
CUBIC 2.0964227 0.1959128 0.2908642

Approx. ∇F max mean RMS

SCALING 2.0997145 0.1974943 0.2925005
LSDERIV 2.0943636 0.1953266 0.2904807
CUBIC 2.0925705 0.1961537 0.2905572

Table 2. Genus-2: Distances to the ground truth mesh with ana-
lytic∇F (top) and finite differences approximation (bottom). The
distances are scaled for readability (factor 103).

5. Analytic and Discrete Surfaces
We implemented the interpolation methods in Poisson

Surface Reconstruction (PSR) [9, 10] and the more recent
Floating Scale Surface Reconstruction (FSSR) [5] to ana-
lyze the impact of Hermite interpolation on real surface re-
construction algorithms. Note that the SCALING method in
(12) is already implemented in the PSR code [18]. In both,
PSR and FSSR, the gradient of the implicit function can
be computed analytically. Because the original weighting
function in FSSR is not C1-continuous, we replace it with
the weighting function w(r) = 1

312 (r − 3)12 · (r + 1)4.
We first consider synthetic data for which the ground

truth is available and the reconstruction errors are easier to
measure and visualize. Then, we demonstrate Hermite in-
terpolation on real-word data from 3D scanners and Multi-
View Stereo. Finally, we show an application to isosurface
extraction from medical images.

5.1. Synthetic Data

We first evaluate the interpolation methods on two syn-
thetic datasets, namely the Sphere and the Blob. To this
end, we obtained high-resolution triangle meshes for both
datasets and use these as ground truth. A point set is gen-
erated by computing per-vertex normals and, in the case of
FSSR, also per-vertex scale values. The connectivity infor-
mation is then discarded and the resulting point sets are used
for reconstruction with PSR and FSSR.

Sphere Dataset: Because both PSR and FSSR use non-
linear basis functions, estimation of isovertex positions us-
ing linear interpolation leads to artifacts, see Figure 7. Ta-
ble 3 gives the distances of the reconstructed meshes from
the ground truth. PSR produces essentially the same quality
result for all non-linear interpolants while the FSSR error
improves for most metrics with cubic interpolation.



Ground Truth LINEAR SCALING LSDERIV CUBIC

Figure 7. Sphere: Visualization of the reconstruction error with PSR (top) and FSSR (bottom).

Ground Truth LINEAR SCALING LSDERIV CUBIC

Figure 8. Blob: Visualization of the reconstruction error with PSR (top) and FSSR (bottom).

PSR [9] max mean RMS

LINEAR 1.4475699 0.2142690 0.2911505
SCALING 0.8729671 0.1757755 0.2155248
LSDERIV 0.8729671 0.1757931 0.2155422
CUBIC 0.8729671 0.1758032 0.2155564

FSSR [5] max mean RMS

LINEAR 1.5472957 0.3554895 0.3957082
SCALING 0.7770098 0.3520047 0.3692734
LSDERIV 0.7552927 0.3527912 0.3668787
CUBIC 0.6887877 0.3547093 0.3637461

Table 3. Reconstruction error on the Sphere dataset. The statistic
shows the error between ground truth and the reconstruction using
PSR (top) and FSSR (bottom). The distances have been obtained
with Metro [3] and scaled for readability (factor 103).

PSR [9] max mean RMS

LINEAR 3.837804 0.321320 0.467301
SCALING 3.137207 0.282015 0.369597
LSDERIV 3.137207 0.282022 0.369603
CUBIC 3.137207 0.281913 0.369466

FSSR [5] max mean RMS

LINEAR 6.066898 0.659474 0.861424
SCALING 5.913879 0.485656 0.622890
LSDERIV 5.921924 0.434055 0.561907
CUBIC 6.012503 0.391485 0.513969

Table 4. Reconstruction error on the Blob dataset. The statistic
shows the error between ground truth and the reconstruction using
PSR (top) and FSSR (bottom). The distances have been obtained
with Metro [3] and scaled for readability (factor 104).



Figure 9. Stanford Bunny: Geometric difference between LINEAR
and CUBIC interpolation with PSR (left) and FSSR (right).

Blob Dataset: We also evaluate the different interpolation
approaches on the Blob dataset, which exhibits more inter-
esting curvature changes. The reconstruction errors are vi-
sualized in Figure 8. Similar to the Sphere dataset, linear
interpolation leads to strong ringing artifacts and larger er-
rors, see Table 4.

It is noteworthy that, with PSR, the quality improve-
ment from LINEAR to non-linear interpolation is substan-
tial. However, which higher-order interpolant is used barely
makes a difference. This is because PSR represents the
implicit function as the sum of second-order B-splines, so
all interpolants reproduce the quadratic function along the
edge. For FSSR, the CUBIC interpolation improves mean
and RMS error as well as the visual appearance, although
the maximum error can remain large.

5.2. Scanner and MVS Data

Next, we evaluate the interpolation methods on real-
world scanner and MVS data. Because a ground truth model
is not available for this data, we focus on a visual com-
parison between the LINEAR and the CUBIC interpolation.
Note that visually, all higher-order methods produce results
that are almost indistinguishable.

Stanford Bunny: We reconstructed the Stanford Bunny
using PSR and FSSR with both, LINEAR and the CUBIC
interpolation. The geometric difference between the two
methods is visualized in Figure 9. This difference is pre-
sumably caused by the improved fitting with the CUBIC in-
terpolant, and the ringing artifacts of the linear interpolation
method become clearly visible.

Miniature City: The miniature city is a Multi-View
Stereo dataset with 76 input images and has been recon-
structed with the publicly available Multi-View Environment
[6]. The resulting point cloud with 4,627,606 samples was
then used as input for PSR and FSSR with the LINEAR and

Figure 10. Miniature City: 2 out of 76 input images (top). Geo-
metric difference between LINEAR (middle) and CUBIC (bottom)
interpolation with PSR (left) and FSSR (right).

CUBIC interpolation method. The geometric improvement
is visualized in Figure 10 and clearly visible even without
color coding.

5.3. MRI Data

Brain: We compared the LINEAR and the CUBIC inter-
polation on an MRI scan of a brain obtained from the OA-
SIS MRI database [21] (resolution 182× 218× 182). Since
the dataset comes without gradients, finite differences are
used to estimate them. In Figure 11 we provide results in-
cluding contrast-enhanced renderings to highlight the arti-
facts caused by the linear method, which are otherwise hard
to visualize.

6. Conclusion
We presented Hermite interpolation for Marching

Cubes-like algorithms to eliminate the majority of the ar-
tifacts that occur when contouring non-linear implicit func-
tions with traditional linear interpolation. The extracted tri-
angle meshes are guaranteed to have the same connectivity
as the meshes extracted with traditional Marching-Cubes,
but the accuracy of the isovertex positions is improved.

The proposed interpolation methods, particularly the
quadratic ones, are simple to implement and can be applied
to a wide range of surface extraction algorithms. The com-
putational overhead of the quadratic methods is insignifi-
cant and in fact barely measurable. The cubic interpolation
increases the total surface extraction time by about 3% with
our implementation.

We have demonstrated the applicability of Hermite in-
terpolation on PSR and FSSR and show that when gradi-
ents cannot be computed analytically, the finite differences
approximation is still successful in removing the artifacts.
Any of the non-linear interpolation methods substantially



Figure 11. Brain: The brain isosurface with CUBIC interpolation
(top left) and the error distance compared to linear interpolation
(top right). High-contrast close-ups (bottom) of the linear method
(left) and the cubic method (right) show the ringing caused by lin-
ear method.

increases surface accuracy, but “the right” method depends
on the application: For example, in PSR, the quadratic
methods provide sufficient accuracy while in FSSR, cubic
interpolation leads to further improvement.

Acknowledgements
Part of the research leading to these results has received

funding from the European Commission’s FP7 Framework
Programme under grant agreements ICT-323567 (HAR-
VEST4D) and ICT-611089 (CR-PLAY).

References
[1] J. Bloomenthal. Polygonization of Implicit Surfaces. Com-

puter Aided Geometric Design, 5(4):341–355, 1988. 1, 2
[2] E. Catmull and R. Rom. A Class of Local Interpolating

Splines. In Computer Aided Geometric Design, pages 317
– 326. 1974. 4

[3] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring
Error on Simplfied Surfaces. Compututer Graphics Forum,
17(2):167–174, 1998. 4, 6

[4] A. Doi and A. Koide. An Efficient Method of Triangulat-
ing Equi-Valued Surfaces by using Tetrahedral Cells. IEICE
Transactions on Information and Systems, 74(1):214–224,
1991. 1, 2

[5] S. Fuhrmann and M. Goesele. Floating Scale Surface Re-
construction. In Proceedings of ACM SIGGRAPH, 2014. 2,
5, 6

[6] S. Fuhrmann, F. Langguth, and M. Goesele. MVE - A Multi-
View Reconstruction Environment. In Proceedings of the

Eurographics Workshop on Graphics and Cultural Heritage
(GCH), 2014. 7

[7] R. S. Gallagher and J. C. Nagtegaal. An Efficient 3-D Vi-
sualization Technique for Finite Element Models and Other
Coarse Volumes. In Proceedings of ACM SIGGRAPH, pages
185–194, 1989. 2

[8] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual Contour-
ing of Hermite Data. ACM Transactions on Graphics, 21(3),
July 2002. 2

[9] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson Surface
Reconstruction. In Eurographics Symposium on Geometry
Processing, pages 61–70, New York, New York, USA, 2006.
2, 5, 6

[10] M. Kazhdan and H. Hoppe. Screened Poisson Surface Re-
construction. ACM Transactions on Graphics, 32(3):1–13,
June 2013. 2, 5

[11] M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. Uncon-
strained Isosurface Extraction on Arbitrary Octrees. In Eu-
rographics Symposium on Geometry Processing, pages 125–
133, 2007. 1, 2

[12] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Sei-
del. Feature Sensitive Surface Extraction from Volume Data.
Proceedings of ACM SIGGRAPH, D:57–66, 2001. 2

[13] D. H. U. Kochanek and R. H. Bartels. Interpolating Splines
with Local Tension, Continuity, and Bias Control. In Pro-
ceedings of ACM SIGGRAPH, pages 33–41, 1984. 3

[14] V. Lempitsky. Surface Extraction from Binary Volumes with
Higher-Order Smoothness. Proceedings of IEEE Computer
Vision and Pattern Recognition, pages 1197–1204, 2010. 2

[15] W. E. Lorensen and H. E. Cline. Marching Cubes: A high
resolution 3D surface construction algorithm. In Proceed-
ings of ACM SIGGRAPH, pages 163–169, 1987. 1, 2

[16] J. Manson and S. Schaefer. Isosurfaces Over Simplicial Par-
titions of Multiresolution Grids. Computer Graphics Forum,
29(2):377–385, 2010. 2

[17] A. Marinc, T. Kalbe, M. Rhein, and M. Goesele. Interac-
tive Isosurfaces with quadratic C 1 Splines on Truncated Oc-
tahedral Partitions. Information Visualization, 11(1):60–70,
2012. 2

[18] Michael Kazhdan. Poisson Surface Reconstruction Code.
http://www.cs.jhu.edu/ misha/Code/PoissonRecon/. 2, 5

[19] H. Mueller and M. Stark. Adaptive generation of surfaces in
volume data. Technical report, 1991. 1, 2

[20] T. S. Newman and H. Yi. A Survey of the Marching Cubes
Algorithm. Computers and Graphics, 30(5):854–879, 2006.
2

[21] OASIS. Open Access Series of Imaging Studies.
http://www.oasis-brains.org/. 7

[22] S. Schaefer, T. Ju, and J. Warren. Manifold dual contouring.
IEEE Transactions on Visualization and Computer Graphics,
13(3):610–619, May 2007. 2

[23] S. Schaefer and J. Warren. Dual Marching Cubes: Pri-
mal Contouring of Dual Grids. Computer Graphics Forum,
24(2):195–201, June 2005. 2

[24] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha.
Topology Preserving Surface Extraction using Adaptive Sub-
division. Proceedings of Symposium on Geometry Process-
ing, page 235, 2004. 1, 2


