
This is the authors’ version of the work. It is posted here by permission of Elsevier for personal use.
Not for redistribution. The final publication is available at dx.doi.org/10.1016/j.cag.2015.09.003.

MVE – An Image-Based Reconstruction Environment

Simon Fuhrmann, Fabian Langguth, Nils Moehrle, Michael Waechter and Michael Goesele

Graphics, Capture and Massively Parallel Computing – TU Darmstadt – Germany

Abstract

We present an image-based reconstruction system, the Multi-View Environment. MVE is an end-to-end multi-view geometry
reconstruction software which takes photos of a scene as input and produces a textured surface mesh as result. The system covers
a structure-from-motion algorithm, multi-view stereo reconstruction, generation of extremely dense point clouds, reconstruction
of surfaces from point clouds, and surface texturing. In contrast to most image-based geometry reconstruction approaches, our
system is focused on reconstruction of multi-scale scenes, an important aspect in many areas such as cultural heritage. It allows
to reconstruct large datasets containing some detailed regions with much higher resolution than the rest of the scene. Our system
provides a graphical user interface for visual inspection of the individual steps of the pipeline, i.e., the structure-from-motion result,
multi-view stereo depth maps, and rendering of scenes and meshes.

Keywords: Image-Based Reconstruction, Structure-from-Motion, Multi-View Stereo, Surface Reconstruction, Texturing

1. Introduction

Acquiring geometric data from natural and man-made ob-
jects or scenes is a fundamental field of research in computer
vision and graphics. 3D digitization is relevant for designers,
the entertainment industry, and for the preservation as well as
digital distribution of cultural heritage objects and sites. In this
paper, we introduce MVE, the Multi-View Environment, a free
software solution for low-cost geometry acquisition from im-
ages. The system takes as input a set of photos and provides
the algorithmic steps necessary to obtain a high-quality sur-
face mesh of the captured object as final output. This includes
structure-from-motion, multi-view stereo, surface reconstruc-
tion and texturing.

Geometric acquisition approaches are broadly classified in-
to active and passive scanning. Active scanning technologies
for 3D data acquisition exist in various flavors. Time of flight
and structured light scanners are known to produce geometry
with remarkable detail and accuracy. But these systems require
expensive hardware and elaborate capture planning and execu-
tion. Real-time stereo systems such as the Kinect primarily ex-
ist for the purpose of gaming, but are often used for real-time
geometry acquisition. These systems are based on structured
infra-red light which is emitted into the scene. They are often
of moderate quality and limited to indoor settings because of
inference with sunlight’s infrared component. Finally, there is
some concern that active systems may damage objects of cul-
tural value due to intense light emission.

Passive scanning systems do not emit light, are purely based
on the existing illumination, and will not physically affect the
subject matter. The main advantage of these systems is the
cheap capture setup which does not require special hardware:
A consumer-grade camera (or just a smartphone) is enough to
capture datasets. The reconstruction process is based on find-

ing visual correspondences in the input images, which, com-
pared to active systems, usually leads to less complete geome-
try, and limits the scenes to static, well-textured surfaces. The
inexpensive demands on the capture setup, however, come at
the cost of much more elaborate computer software to process
the unstructured input. The standard pipeline for geometry re-
construction from images involves four major algorithmic steps
(see Figure 1):

• Structure-from-Motion (SfM) infers the extrinsic cam-
era parameters (position and orientation) and the camera
calibration (focal length and radial distortion) by find-
ing sparse but stable correspondences between images.
A sparse point-based 3D representation of the subject is
created as a by-product of camera reconstruction.

• Multi-View Stereo (MVS) reconstructs dense 3D geome-
try by finding visual correspondences in the images using
the estimated camera parameters. These correspondences
are triangulated yielding dense 3D information.

• Surface Reconstruction takes as input a dense point cloud
or individual depth maps and produces a globally consis-
tent surface mesh.

• Surface Texturing computes a consistent texture for the
surface mesh using the input images.

It is not surprising that software solutions for end-to-end
passive geometry reconstruction are rare. The reason lies in the
technical complexity and the effort required to create such tools.
Many projects cover parts of the pipeline, such as Bundler [1],
VisualSfM [2], or OpenMVG [3] for structure-from-motion re-
construction, PMVS [4] for multi-view stereo, and Poisson Sur-
face Reconstruction [5] for mesh reconstruction. A few com-
mercial software projects offer complete end-to-end pipelines

Preprint submitted to Elsevier August 23, 2015

http://dx.doi.org/10.1016/j.cag.2015.09.003


Figure 1: Our multi-view reconstruction pipeline. Starting from input images, structure-from-motion (SfM) techniques are used to reconstruct camera parameters
and a sparse set of points. Depth maps are computed for every image using multi-view stereo (MVS). Finally, a colored mesh is extracted from the union of all
depth maps using a surface reconstruction approach (FSSR). Optional texturing can be applied afterwards.

covering SfM, MVS, Surface Reconstruction and Texturing.
This includes Arc3D, Agisoft Photoscan and Acute3D Smart-
3DCapture. All of them are, however, closed source and do not
facilitate research. In contrast, we offer a complete pipeline as
a free, open source software system, which was introduced in
an earlier version of this paper [6].

Our system handles many kinds of scenes, such as compact
objects, open outdoor scenes, and controlled studio datasets. It
avoids to fill holes in regions with insufficient data for a reli-
able reconstruction. This may leave holes in the surfaces but
does not introduce artificial geometry, common to many global
reconstruction approaches. Our software puts a special empha-
sis on multi-resolution datasets which can contain very detailed
regions in otherwise less detailed datasets. It has been shown
that inferior results are produced if the multi-resolution nature
of the input data is not considered properly [7, 8, 9].

In the paper’s remainder we first give a technical overview
of our system and introduce its individual components in Sec-
tion 2. A few practical aspects and limitations of our system are
discussed in Section 3. We then show reconstruction results on
several datasets with different characteristics and demonstrate
the versatility of our pipeline in Section 4. We briefly describe
our software framework and conclude in Section 5.

2. System Overview

Our system consists of four steps: Structure-from-motion
(SfM) which reconstructs the parameters of the cameras, multi-
view stereo (MVS) for establishing dense visual corresponden-
ces, a meshing step which merges the MVS geometry into a
globally consistent mesh and finally a texturing step creating
seamless textures from the input images. In the following, we
give a concise overview of the process, using the Bronze Statue
dataset as an example for a cultural heritage artifact, see Fig-
ure 1. For a more detailed explanation of the theoretic back-
ground of these approaches we refer the interested reader to
Szeliski’s textbook [10].

2.1. Structure-from-Motion
SfM is one of the crowning achievements of photogram-

metry and computer vision. Its foundations were laid by Arm-

strong et al. [11] and Pollefeys et al. [12] and it was opened
up to a wider audience by Pollefeys et al. [13] and the semi-
nal Photo Tourism paper [1]. Not many software solutions for
SfM have been published, probably because the theoretic back-
ground and the algorithmic details are involved. Freely avail-
able software for this purpose includes Bundler [1], VisualSfM
[2] and OpenMVG [3]. In essence, SfM reconstructs the pa-
rameters of cameras solely from sparse correspondences in an
otherwise unstructured image collection. The recovered camera
parameters are the extrinsic calibration (i.e., camera orientation
and position), and the intrinsic calibration (i.e., focal length and
radial distortion of the lens). The SfM reconstruction pipeline is
subdivided into several individual steps, illustrated in Figure 2.
These steps are now explained in more detail.

Feature detection. The first step is to detect features in each in-
put image (Figure 3, left). Our system implements and jointly
uses both SIFT [14] and SURF [15], which are among the top
performing features in literature. These algorithms first search
for points of interest in the images which are potentially dis-
criminative from each other (at least for a machine). A neigh-
borhood around these points is extracted and stored within a
feature descriptor. Variations in the images require invariance
of the feature descriptors with respect to certain transforma-
tions, such as image scale, rotation, noise, exposure and con-
trast changes.

Feature matching. Next, the feature descriptors are matched
between pairs of images (Figure 3, right) by finding for each
descriptor a corresponding descriptor in the second image with
small Euclidean distance, which amounts to a nearest neigh-
bor search in a high-dimensional space. Because corresponding
points in two images are subject to the epipolar constraints of
a perspective camera model (described by the fundamental ma-
trix [16]), filtering the matches by enforcing these constraints
removes many false correspondences. Matching can take a long
time because every image is matched to all other images, result-
ing in runtime that is quadratic in the number of images. As an
expedient in our system, the pairwise matching information can
be saved to a file and reloaded later in case SfM is repeated with
different parameters. This state is called the prebundle.

2



Initial Pair Triangulate Bundle Adjustment Next View Triangulate Bundle Adjustment

BA BA

Figure 2: Incremental SfM: Starting from the initial camera pair, all pairwise matches of the pair are triangulated. The camera poses and the 3D points are then
optimized using bundle adjustment. Suitable new cameras are incrementally added to the reconstruction, new tracks are triangulated and bundle adjustment is
performed.

Figure 3: Feature detection (left) and feature matching between two views
(right). The horizontal lines are mostly good matches, while the heavily slanted
lines are outliers. Enforcing two-view constraints will remove most outliers.

Accelerating matching. We also investigated accelerating the
matching time of our system. Common approaches include
matching fewer features per image, reducing the number of
pairs in a pre-processing step, or accelerating the matching it-
self using parallelism. We use a practical combination of these
approaches: By matching a few low-resolution features, one
can quickly identify image pairs that potentially do not match,
and reject the candidates before a matching of all features is
performed. It has been shown by Wu [2] that this can consid-
erably accelerate the matching time. Although low-resolution
matching rejects some good image pairs, we could not observe
a loss of reconstruction quality.

Track generation. The pairwise matching results are then com-
bined and expanded over several views, yielding feature tracks.
During the next steps, each track will be triangulated and yields
a single 3D point in the reconstruction.

Initial Pair. The incremental reconstruction is bootstrapped us-
ing an initial camera pair. It is important to select this pair care-
fully to avoid degenerate configurations. In general, a good pair
has many pairwise matches, but also a good amount of parallax.
If the motion between the two cameras is too small, the trian-
gulation becomes unstable and leads to badly conditioned 3D
points. Also, if many pairwise matches correspond to a planar
region in the scene, the camera’s focal length becomes indis-
tinguishable from scene depth. Both must be avoided and can
be detected by fitting a homography to all feature matches of
the pair. If a majority of the feature matches can be explained
by a homography, the motion between the cameras is small or
the features are in a degenerate planar configuration, and the
camera pair should be avoided. Once an initial pair is selected,

Figure 4: Structure-from-motion reconstruction showing the final 3D point
cloud and all of the 437 camera poses. The SfM point cloud has been cropped
for visual clarity to remove background points.

relative camera poses are extracted from the fundamental ma-
trix and the pairwise matches are triangulated into 3D points.

Bundle Adjustment. The triangulated 3D points and the param-
eters of the cameras are not optimal with respect to the geo-
metric distance between the projection of the 3D points and
the original feature observations. This distance is called the re-
projection error and minimizing it attains the Maximum Like-
lihood estimate under the assumption of Gaussian noise in the
feature observations. The goal of Bundle Adjustment is to glob-
ally and jointly refine the camera parameters and 3D point posi-
tions by minimizing the sum of reprojection errors. This leads
to a high-dimensional, non-linear, least-squares optimization
problem and specialized solvers have been developed. We use
PBA by Wu et al. [17] in our system.

Incremental reconstruction. In the following process new cam-
eras and new 3D points are incrementally added to the recon-
struction. The next best camera is chosen as the view with
the highest number of already reconstructed tracks. The pose
of this camera is then estimated from the correspondences be-
tween 3D points and image features using the Perspective 3-
Point algorithm [18]. New tracks become available for trian-
gulation and all parameters are again optimized by Bundle Ad-
justment. These steps are iterated until all cameras are recon-
structed, or no suitable new camera can be found. Figure 4
shows the final state of a reconstruction with the camera frusta
and a sparse set of 3D points.

2.2. Multi-View Stereo
Once the camera parameters are known, dense geometry re-

construction is performed. MVS algorithms exist in various

3



Figure 5: One of the input images and the corresponding depth map recon-
structed with multi-view stereo. Each depth value encodes the distance from
the camera center to the geometry.

flavors [19]. Some approaches work with volumetric repre-
sentations [20] but usually do not scale well to large datasets.
Others reconstruct global point clouds, e.g., the popular PMVS
implementation of Furukawa et al. [4]. The scalability issues
of this technique further motivated work that clusters the scene
into smaller, more manageable pieces [21]. Although PMVS
is widely used, we aim at creating much denser point clouds
for mesh reconstruction in order to preserve more details in the
final result. A third line of work directly reconstructs global
meshes [22] and couples MVS and surface reconstruction ap-
proaches in a mesh evolution framework.

We use the Multi-View Stereo for Community Photo Collec-
tions approach by Goesele et al. [23] which reconstructs a depth
map for every view (Figure 5). For a given reference view the
algorithm first selects a set of 20 neighboring views according
to parallax, overlap, and image resolution in a global view se-
lection. The depth map of the reference view is initialized using
the depth values of the sparse SfM points. These initial depth
values are first refined in an optimization procedure, and then
propagated to neighboring pixels in a region-growing fashion.
Unrefined depth values are processed in order of their reliabil-
ity, starting from the most reliable pixels. The depth refinement
chooses a suitable subset of 4 neighboring views with a good
parallax distribution and a high photo-consistency. The latter is
measured by reprojecting a 5× 5 patch around the pixel into the
neighboring images and computing the normalized cross corre-
lation (NCC). The final, optimized depth value for the pixel
then maximizes the photo-consistency score for all neighboring
views.

Although the resulting depth maps contain a lot of redun-
dancy because of the large overlaps in the views, the approach
effortlessly scales to large scenes: Only a small set of neigh-
boring views is required for reconstructing a single depth map.
In a way, this can be seen as an out-of-core approach to MVS.
The excessive redundancy in the depth maps can be a burden;
not so much in terms of storage but processing power required
for depth map computation. On the positive side, this approach
has proven to be capable of producing highly detailed geometry,
and to overcome the noise in the individual depth maps [8, 9].
Another advantage of depth maps is that per-view data (such as
color) is directly available from the images.

Figure 6: The final surface rendered with shading and with texture.

2.3. Surface Reconstruction

Merging the individual depth maps into a single, globally
consistent representation is a challenging problem. The input
photos are usually subject to large variations in viewing param-
eters. For example, some photos show a broad overview of the
scene while others show small surface details. The depth maps
inherit these multi-scale properties which leads to vastly differ-
ent sampling rates of the observed surfaces.

Many approaches for depth map fusion have been proposed.
The pioneering work by Curless and Levoy [24] renders lo-
cally supported signed distance fields (SDF) of the depth maps
into a volumetric representation. Overlapping SDFs are aver-
aged, which effectively reduces noise, but also quickly elimi-
nates geometric details if depth maps with different resolution
are merged. Fuhrmann and Goesele [8] present a solution based
on a hierarchical SDF which avoids averaging geometry at dif-
ferent resolutions. We use the follow-up work by Fuhrmann
and Goesele [9]. They present a point-based reconstruction ap-
proach (Floating Scale Surface Reconstruction, FSSR), which
additionally takes per-sample scale values as input. In contrast
to point-based approaches that do not use scale, such as Poisson
Surface Reconstruction [5], the method is able to automatically
adapt the interpolation and approximation behavior depending
on sample scale and redundancy without explicit parameter set-
tings.

In order to generate the input samples for FSSR, each depth
map is triangulated and colored using the input image. The
connectivity information is used to compute a normal for each
vertex. Additionally, the lengths of all edges emanating from a
vertex are averaged and used as scale value for the vertex. The
union of all vertices from all depth maps is then used as input
to FSSR.

4



Q R
Figure 7: In room-like environments, it is important to move between every
photo and to avoid capturing photos in a panorama fashion. Moving between
the images ensures parallax and well conditioned 3D points.

FSSR inserts all samples into an octree hierarchy. The oc-
tree is built dynamically, expanding and growing as more sam-
ples are added. Each sample is inserted in an appropriate level
where the sample’s scale is approximately as large as the side-
length of the octree node. Voxels are then generated in the cor-
ners of the octree leaf nodes and a hierarchical, signed implicit
function is constructed from the samples and evaluated at the
voxel positions. The final surface is extracted as the zero-level
set of the implicit function using a hierarchical variant of the
Marching Cubes algorithm [25], see Figure 6.

An important aspect of FSSR is that it does not interpolate
regions with insufficient geometric data. Instead, it leaves these
regions empty which is useful for incomplete or open (outdoor)
scenes. This stands in contrast to many global approaches that
often hallucinate geometry, requiring manual cleanup. Because
scale values are known, FSSR is capable of analyzing whether
an increased sample density is caused by an increase in surface
resolution, or by sample redundancy, e.g., because many depth
maps are overlapping in a certain region. This property allows
FSSR to use the available redundancy for noise reduction, and
prevents fitting to the noise in the input data.

2.4. Surface Texturing

Surface texturing uses the input photos with the associated
camera parameters in order to create a globally consistent tex-
ture for the surface, see Figure 6 (right). This process usually
generates one or several texture atlases and assigns texture co-
ordinates to every vertex of the mesh. Generating a globally
consistent and seamless texture is challenging due to changes
in illumination, exposure time or white balancing in the in-
put photos. Furthermore, the photos may contain objects in
the foreground, such as tourists or cars, occluding the object of
interest.

There mainly exist two different lines of work in texturing
literature. The first line of work uses blending of multiple views
in order to generate a final texture for every surface element
[26, 27]. The blending, however, can lead to blurring of surface
details. The other line of work uses a single input photo to
texture a surface region [28, 29], which avoids blurring but may
lead to visible seams between the regions caused by exposure
or white balance differences. The latter approaches thus employ
a color adjustment step to every texture region to eliminate the
seams.

We use Waechter et al.’s work [30] (Let There Be Color!
Large-Scale Texturing of 3D Reconstructions), which uses a

QR R
Figure 8: A densely sampled spiral around compact objects with a large over-
lap between the photos leads to the best results. A sparse sampling can lead to
disconnected components in SfM or holes in the MVS reconstruction.

single view to texture surface regions. This work is mainly
based on an approach by Lempitsky and Ivanov [28] but uses
an improved view selection that avoids blurred, out-of-focus
image regions and employs a photo-consistency check to de-
tect occluders in the input images. In a two-step color adjust-
ment, colors are first globally adjusted on a per-vertex basis fol-
lowed by local per-pixel adjustment using Poisson Image Edit-
ing [31].

3. Practical Aspects

In this section we discuss some aspects that should be con-
sidered when using our image-based reconstruction system. We
present some guidelines that can help users to capture better in-
put data in order to facilitate high quality results. We also dis-
cuss some limitations of the presented approaches, which do
not only apply to our reconstruction system but more generally
to these types of algorithms.

3.1. Capturing Photos
The capture session is a vital part of the reconstruction pro-

cess which fundamentally influences the final quality and cov-
erage of the scene. A very common problem is that too few
photos are captured, which leads to a sparse coverage of the
scene and can result in failures of both the SfM and the MVS
reconstruction.

Visual Overlap. In order to robustly estimate the 3D position
of any point on the surface of the scene, it has to be observed
by at least five different cameras. This requirement originates
from the MVS algorithm that tries to find for every pixel in the
reference view a correspondence in at least four other views.
Although a reconstruction with fewer neighboring views is in
theory possible, it will reduce robustness and may lead to more
noisy results. More overlap also leads to a denser and more ac-
curate SfM reconstruction that is less likely to fail or leave out
isolated views. Usually more photos will not hurt quality, but
there is a trade-off between quality and the required reconstruc-
tion time. As a rule of thumb, it is a good idea to take twice as
many photos as one might think is enough.

Camera Parallax. Besides a large overlap in the photos, par-
allax is required for a stable triangulation. The camera should
be re-positioned for every photo and parallax in both horizon-
tal and vertical direction is desirable. (This is exactly opposite
to how panoramas are captured, where parallax in the images

5



Figure 9: Two sides of the Arc de Triomphe in Paris. Front and back are so
similar that feature matching produces false correspondences connecting the
two sides. Photo credits: Flickr users trawets1 and skding.

must be avoided.) This is again important for SfM and MVS:
Triangulating a feature track or the depth of a pixel with insuffi-
cient parallax results in a small triangulation angle and a poorly
conditioned 3D position. Figure 7 and 8 illustrate good and bad
camera distributions.

Light and Color. While overlap and parallax are mainly im-
portant for accurate surface estimation, the lighting in the scene
and the camera settings can also influence the final result. Con-
siderable changes in exposure and white balance will degrade
the quality of the per-vertex color produced by surface recon-
struction and also the final textured result. The camera settings
should be kept as constant as possible over the capture ses-
sion. As the scene illumination is baked into the photos and
ultimately also into the textures, changing the lighting relative
to the scene will also have a negative effect on the result. This
happens, e.g., if an object is placed on a turntable and rotated
during acquisition while keeping the lights constant. Hard shad-
ows, e.g., if the scene is subject to direct sunlight, can produce
unpleasant transitions on the object, and it is preferable to cap-
ture on an overcast day in order to avoid these shadow bound-
aries.

3.2. General Limitations
Structure from Motion. The feature matching step of SfM is de-
signed to find correspondences between pairs of images. Each
feature is expressed in terms of the image gradient, which is af-
fected by both lighting and, more importantly, texture. Weakly
textured objects will lead to fewer features and can result in
fewer correspondences and more outliers. If feasible, placing
additional textured targets in the scene often improves the re-
sults. Another common problem are repetitive structures in the
scene, such as buildings with identical windows or walls. Thus
features become ambiguous and may lead to false matches. See
Figure 9 for an architectural object with repetitive appearance.

Multi-View Stereo. MVS estimates geometry by finding corre-
sponding pixels in neighboring images. These correspondences
are established by using photometric consistency measures on
small image patches. For weakly textured surfaces the image
patches are likely to contain insufficient color variation to iden-
tify unique correspondences. As a result, geometry estimation

Figure 10: One image of a dataset with a weakly textured relief, and the corre-
sponding depth map. The depth map contains a big hole in the homogeneous
region because visual correspondences cannot be established reliably.

can fail in flat regions with uniform color, see Figure 10 for
an example. The photometric consistency also assumes that
the object’s appearance is independent of the viewing direc-
tion, which is only true for diffuse surface materials. In case
of specular materials, highlights move depending on the cam-
era position and correspondences become inaccurate. Usually,
this leads to more noise in the reconstruction.

Texturing. The texturing algorithm adjusts colors under the as-
sumption of Lambertian materials and static lighting. Varying
lighting situations (e.g., moving shadows, day/night illumina-
tion, colored lights) will have a negative effect on the generated
texture. Surface specularity is problematic for the same rea-
son, because it introduces local appearance changes. To some
extent, the photo consistency check, which was originally de-
signed to detect occluders, can help with these local variations.
However, it is still required that the majority of the views ob-
serve a consistent surface.

4. Reconstruction Results

In the following, we show results on a few datasets we ac-
quired over time. We selected a variety of scenarios to show the
broad applicability of our system.

Duck. The first dataset, called Duck, was captured in a con-
trolled studio environment and contains 160 images of a small,
diffuse ceramic duck figurine, see Figure 11. This is a relatively
compact dataset with uniform scale as the images have the same
resolution and are evenly spaced around the object. Notice that,
although the individual depth maps contain many small holes,
the final geometry is quite complete. Here, redundancy is key as
all of our algorithms are completely local and no explicit hole
filling is performed.

Trevi Fountain. Next, we reconstruct Rome’s Trevi Fountain
from 871 images downloaded from the Internet. We demon-
strate that our pipeline is well suited even for uncontrolled Inter-
net images: The features we use are invariant to many artifacts
in the images, such as changing illumination. The MVS algo-
rithm [23] uses a color scale to compensate for changing image
appearance and is well suited for community photo collections.
The surface reconstruction [9] handles the unstructured view-
points well. The texturing, however, does not produce a partic-
ularly good result because the original images have very non-
uniform appearances. In Figure 12 the right side shows a lot of
different, inconsistent colors from the uncontrolled images.

6

https://www.flickr.com/photos/trawets/4110157612/
https://www.flickr.com/photos/skding/5691700859


Figure 11: The Duck dataset. The bottom row shows 2 out of 160 input images
and the corresponding depth maps. The top row shows the reconstruction with
shading (left) and texture (right).

Citywall. We conclude our demonstration with the Citywall
dataset in Figure 13. The 363 input images depict an old his-
toric wall with a fountain. This dataset demonstrates the multi-
scale abilities of our system. While most of the views show
an overview of the wall, some photos cover small details of
the fountain. These details are preserved during reconstruction
yielding a truly multi-resolution output mesh.

4.1. Runtime Performance

Actual runtime performance and memory consumption de-
pends on various factors. For example, SfM runtime is domi-
nated by the number of image features, MVS mostly depends
on the image size, FSSR on the amount of surface samples and
octree structure, and Texturing on the number of faces and size
of the input images.

In Table 1 we present timings for all datasets in this paper.
We decimated most meshes before texturing as the algorithm
runs much faster if fewer faces need to be processed. However,
decimating multi-scale datasets like the Citywall is significantly
harder compared to our other datasets because high-resolution
geometry can be destroyed in the process. We therefore tex-
tured this dataset at full resolution.

The reconstructions have been computed on an Intel Xeon
Dual CPU system with 8× 2.6 GHz per CPU. Usually 4 GB of
main memory are sufficient for the smaller datasets. For large
datasets, we recommend at least 8 GB of main memory (such as
for the Citywall dataset, where multi-scale surface reconstruc-
tion is quite demanding). Our system is neither optimized for
runtime performance nor memory consumption but most parts
of the pipeline are parallelized and multiple CPUs will con-
siderably improve the computation time. Currently, we do not
perform computations on the GPU as only a few steps of our
pipeline would benefit from GPU acceleration.

Figure 12: The Trevi Fountain dataset. The bottom row shows 3 images of
a total of 871 input images. The top row shows the reconstruction rendered
with shading (left) and with texture (right). Photo credits: Flickr users Vince
O’Sullivan, Andy Hay, Ecyrd, Creative Commons License.

5. Conclusion

In this paper we presented MVE, the Multi-View Environ-
ment, a free and open 3D reconstruction application, relevant
to the cultural heritage community. It is versatile and can oper-
ate on a broad range of datasets, including the ability to handle
quite uncontrolled photos. It is thus suitable for reconstruction
amateurs. Our focus on multi-scale data allows to put an em-
phasis on interesting parts in larger scenes with close-up pho-
tos. We belief that the effort and expert knowledge that went
into MVE is an important contribution to the community.

The principles behind our software development make our
code base a versatile and unique resource for practitioners (use
it) and for developers/researchers (extend it). We strive for a
user-friendly API and to keep the code size and library depen-
dencies at a maintainable minimum. Our GUI application re-
quires (aside from our own libraries) the widely used Qt frame-
work for the user interface. We ship our software with com-

SfM MVS FSSR Texturing
Dataset Images [min] [min] [min] [min]

Duck 160 2+4 22 7 2
Citywall 363 130+29 132 134 58
Citywall? 363 363+28 131 133 56
Bronze 437 291+37 166 108 6
Trevi 871 304+107 149 197 6

Table 1: Runtime performance for various datasets. The SfM timings are
broken down into feature detection with matching and incremental SfM. The
Citywall? row shows the timing using exhaustive matching, which is consider-
ably slower than our accelerated matching procedure. All meshes except City-
wall have been decimated before texturing.

7

https://www.flickr.com/photos/vjosullivan/10969970444/
https://www.flickr.com/photos/vjosullivan/10969970444/
https://www.flickr.com/photos/andyhay/10016299673/
https://www.flickr.com/photos/ecyrd/115174016/


Figure 13: The Citywall dataset. The top row shows 3 out of 363 input images
and one depth map. The middle row shows the full reconstruction in color, and
the bottom row shows the fountain and a small detail on the fountain.

mand line applications for the entire pipeline to support compu-
tation on server machines without a graphical interface. MVE
is tested on Linux, MacOS X and Windows. The source code is
available from our website http://www.gris.informatik.

tu-darmstadt.de/projects/multiview-environment/.

Acknowledgements

Part of the research leading to these results has received
funding from the European Commission’s FP7 Framework Pro-
gramme under grant agreements ICT-323567 (HARVEST4D)
and ICT-611089 (CR-PLAY), the DFG Emmy Noether fellow-
ship GO 1752/3-1 as well as the Intel Visual Computing Insti-
tute (Project RealityScan).

References

[1] N. Snavely, S. M. Seitz, R. Szeliski, Photo Tourism: Exploring Photo
Collections in 3D, Transactions on Graphics 25 (3) (2006) 835–846.

[2] C. Wu, Towards Linear-Time Incremental Structure from Motion, in: In-
ternational Conference on 3D Vision (3DV), 2013, pp. 127–134.

[3] P. Moulon, P. Monasse, R. Marlet, and others, OpenMVG, https://
github.com/openMVG/openMVG.

[4] Y. Furukawa, J. Ponce, Accurate, Dense, and Robust Multi-View Stere-
opsis, Transactions on Pattern Analysis and Machine Intelligence (PAMI)
32 (8) (2010) 1362–1376.

[5] M. Kazhdan, H. Hoppe, Screened Poisson Surface Reconstruction, Trans-
actions on Graphics 32 (3) (2013) 29:1–29:13.

[6] S. Fuhrmann, F. Langguth, M. Goesele, MVE – A Multi-View Recon-
struction Environment, in: Eurographics Workshop on Graphics and Cul-
tural Heritage (GCH 2014), 2014.

[7] P. Mücke, R. Klowsky, M. Goesele, Surface Reconstruction from Multi-
Resolution Sample Points, in: Vision, Modelling and Visualization
(VMV), 2011.

[8] S. Fuhrmann, M. Goesele, Fusion of Depth Maps with Multiple Scales,
in: SIGGRAPH Asia, 2011, pp. 148:1 – 148:8.

[9] S. Fuhrmann, M. Goesele, Floating Scale Surface Reconstruction, in:
SIGGRAPH, 2014.

[10] R. Szeliski, Computer Vision: Algorithms and Applications, Springer,
2010.

[11] M. Armstrong, A. Zisserman, P. A. Beardsley, Euclidean Reconstruc-
tion from Uncalibrated Images, in: British Machine Vision Conference
(BMVC), 1994, pp. 509–518.

[12] M. Pollefeys, R. Koch, L. V. Gool, Self-Calibration and Metric Recon-
struction in spite of Varying and Unknown Internal Camera Parameters,
in: International Conference on Computer Vision (ICCV), 1998, pp. 90–
95.

[13] M. Pollefeys, L. V. Gool, M. Vergauwen, K. Cornelis, F. Verbiest, J. Tops,
3D Recording for Archaeological Field Work, Computer Graphics and
Applications (CGA) 23 (3) (2003) 20–27.

[14] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints,
International Journal of Computer Vision (IJCV) 60 (2) (2004) 91–110.

[15] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-Up Robust Features
(SURF), Computer Vision and Image Understanding (CVIU) 110 (3)
(2008) 346–359.

[16] Q.-T. Luong, O. Faugeras, The Fundamental Matrix: Theory, Algorithms,
and Stability Analysis, International Journal of Computer Vision (IJCV)
17 (1995) 43–75.

[17] C. Wu, S. Agarwal, B. Curless, S. Seitz, Multicore Bundle Adjustment,
in: Conference on Computer Vision and Pattern Recognition (CVPR),
2011, pp. 3057–3064.

[18] L. Kneip, D. Scaramuzza, R. Siegwart, A Novel Parametrization of the
Perspective-Three-Point Problem for a Direct Computation of Absolute
Camera Position and Orientation, in: Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[19] S. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, A Compari-
son and Evaluation of Multi-View Stereo Reconstruction Algorithms, in:
Conference on Computer Vision and Pattern Recognition (CVPR), 2006.

[20] K. Kolev, T. Brox, D. Cremers, Fast Joint Estimation of Silhouettes and
Dense 3D Geometry from Multiple Images, Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI) 34 (3) (2012) 493–505.

[21] Y. Furukawa, B. Curless, S. M. Seitz, R. Szeliski, Towards Internet-
scale Multi-view Stereo, in: Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

[22] H.-H. Vu, P. Labatut, J.-P. Pons, R. Keriven, High Accuracy and Visibil-
ity-Consistent Dense Multiview Stereo, Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 34 (5) (2012) 889–901.

[23] M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz, Multi-View
Stereo for Community Photo Collections, in: International Conference
on Computer Vision (ICCV), 2007, pp. 1–8.

[24] B. Curless, M. Levoy, A Volumetric Method for Building Complex Mod-
els from Range Images, in: SIGGRAPH, 1996, pp. 303–312.

[25] M. Kazhdan, A. Klein, K. Dalal, H. Hoppe, Unconstrained Isosurface Ex-
traction on Arbitrary Octrees, in: Eurographics Symposium on Geometry
Processing (SGP), 2007.

[26] M. Callieri, P. Cignoni, M. Corsini, R. Scopigno, Masked Photo Blend-
ing: Mapping Dense Photographic Dataset on High-Resolution Sampled
3D Models, Computers & Graphics 32 (2008) 464–473.

[27] C. Allène, J.-P. Pons, R. Keriven, Seamless Image-Based Texture At-
lases using Multi-band Blending, in: International Conference on Pattern
Recognition (ICPR), 2008, pp. 1–4.

[28] V. Lempitsky, D. Ivanov, Seamless Mosaicing of Image-Based Texture
Maps, in: Conference on Computer Vision and Pattern Recognition
(CVPR), 2007, pp. 1–6.

[29] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, D. Cohen-Or, Seamless Montage
for Texturing Models, Computer Graphics Forum 29 (2010) 479–486.

[30] M. Waechter, N. Moehrle, M. Goesele, Let There Be Color! — Large-
Scale Texturing of 3D Reconstructions, in: European Conference on
Computer Vision (ECCV), 2014.

[31] P. Pérez, M. Gangnet, A. Blake, Poisson Image Editing, Transactions on
Graphics 22 (3) (2003) 313–318.

8

http://www.gris.informatik.tu-darmstadt.de/projects/multiview-environment/
http://www.gris.informatik.tu-darmstadt.de/projects/multiview-environment/
https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG

	Introduction
	System Overview
	Structure-from-Motion
	Multi-View Stereo
	Surface Reconstruction
	Surface Texturing

	Practical Aspects
	Capturing Photos
	General Limitations

	Reconstruction Results
	Runtime Performance

	Conclusion

