
Floating Scale Surface Reconstruction

Simon Fuhrmann Michael Goesele
TU Darmstadt, Germany

Figure 1: Floating Scale Surface Reconstruction example. 6 out of 384 input images of a multi-scale dataset (left). Registered images are
processed with multi-view stereo which yields depth maps with drastically different sampling rates of the surface. Our algorithm is able to
accurately reconstruct every caputured detail of the dataset using a novel multi-scale reconstruction approach (right).

Abstract

Any sampled point acquired from a real-world geometric object or
scene represents a finite surface area and not just a single surface
point. Samples therefore have an inherent scale, very valuable in-
formation that has been crucial for high quality reconstructions. We
introduce a new method for surface reconstruction from oriented,
scale-enabled sample points which operates on large, redundant and
potentially noisy point sets. The approach draws upon a simple yet
efficient mathematical formulation to construct an implicit function
as the sum of compactly supported basis functions. The implicit
function has spatially continuous “floating” scale and can be read-
ily evaluated without any preprocessing. The final surface is ex-
tracted as the zero-level set of the implicit function. One of the key
properties of the approach is that it is virtually parameter-free even
for complex, mixed-scale datasets. In addition, our method is easy
to implement, scalable and does not require any global operations.
We evaluate our method on a wide range of datasets for which it
compares favorably to popular classic and current methods.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: Surface Reconstruction

Links: DL PDF WEB CODE

c©ACM, 2014. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version was published in ACM Transactions
on Graphics, 33, 4, July 2014.

SIGGRAPH ’14, August 10 – 14 2014, Vancouver, Canada.
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2904-0/14/08 $15.00.
http://dx.doi.org/10.1145/2601097.2601163

1 Introduction

Surface reconstruction from sampled data is a long-standing and ex-
tensively studied topic in computer graphics. Consequently, there
exists a broad and diverse range of methods with various strengths
and weaknesses. One well-known example is VRIP [Curless and
Levoy 1996], an efficient and scalable method able to create high
quality models. Due to these properties, it was extensively used in
the context of the Digital Michelangelo project [Levoy et al. 2000]
to merge the captured range images. Since then many new tech-
niques were developed that, e.g., use more advanced mathematical
concepts, are able to smoothly interpolate holes, or employ hier-
archical techniques. These approaches come, however, often at
the cost of limited efficiency, scalability or certain quality issues.
Moreover, they frequently treat reconstruction as completely sepa-
rate from the actual sample acquisition process.

Our goal in this paper is to present a method that is able to ef-
ficiently reconstruct high quality meshes from acquired sample
data even for large and noisy datasets using a virtually parameter-
free method. Examples of such reconstructions from hundreds of
millions of samples are the Fountain dataset (Figure 1) and the
full-sized David statue (Figure 12) from the Digital Michelangelo
project [Levoy et al. 2000]. Following on earlier work, we attach
a scale value to each sample which provides valuable information
about the surface area each sample was acquired from.

The sample scale can in general be easily derived from the acqui-
sition process (e.g., from the sample footprint in a structured light
scan or the patch size in a multi-view stereo algorithm). This defi-
nition of scale that has been used in prior work [Muecke et al. 2011;
Fuhrmann and Goesele 2011]. Knowing scale allows us to reliably
identify redundancy in the samples and avoid intermingling data
captured at different scales (such as in multi-view stereo depth maps
reconstructed from images at various distances to the geometry, as
shown in Figure 1). Without scale information, datasets containing
non-uniform redundancy, sample resolution or noise characteristics
will, in general, lead to poor reconstructions. Many methods do
adapt the reconstruction resolution to the input data in some way.
These decisions, however, are often based on the density of the in-
put data. Figure 2 shows a common case that demonstrates why
density and scale are not always related: An increased sample den-

http://doi.acm.org/10.1145/2601097.2601163
http://portal.acm.org/ft_gateway.cfm?id=2601163&type=pdf
http://www.gris.informatik.tu-darmstadt.de/projects/floating-scale-surface-recon/
http://www.gris.informatik.tu-darmstadt.de/projects/floating-scale-surface-recon/
http://dx.doi.org/10.1145/2601097.2601163

Figure 2: Sample density versus sample scale. Noisy input samples from four synthetic, overlapping scans (left). Reconstructed surface with
proper scale values (middle left) and with scale values estimated from the sample density (middle right). In the former case, redundancy is
properly exploited for noise reduction. In the latter case, however, higher sample density leads to higher frequency noise in the reconstruction.
Similarly, the Poisson Surface Reconstruction [2013] (right) also suffers from higher frequency noise.

sity is often caused by data redundancy. Being able to detect this
redundancy makes the difference between proper noise reduction
and reconstructing higher frequency noise.

Conceptually, our method is based on reconstructing an implicit
function F from the input samples. F has spatially continuous
scale (floating scale), i.e., the scale at which surface details are rep-
resented by F varies continuously as defined by the scale of the
input samples. We then define a discrete, scale-adaptive sampling
of F and extract an isosurface corresponding to the zero-level set
of F . The implicit function F is constructed as the sum of com-
pactly supported basis functions. But unlike, e.g., Radial Basis
Functions [Carr et al. 2001] or Smooth Signed Distance Recon-
struction [Calakli and Taubin 2011] our method does not require
the solution of a global problem, is computationally tractable, and
the implicit function can, given the samples, readily be evaluated.
The compact support leads to an approach that reconstructs open
meshes and leaves holes in regions where data is too sparse for a
reliable reconstruction. This is useful for scenes which cannot be
completely captured, such as outdoor scenes. This stands in con-
trast to methods such as Kazhdan et al. [2006], which perform
excellent hole-filling but often hallucinate geometry in incomplete
regions, requiring manual intervention.

Our contributions are:

• The reconstruction of a continuous, signed implicit function
with spatially continuous scale (floating scale) using a simple
mathematical formulation,

• a virtually parameter-free approach that selects the appropri-
ate reconstruction scale and automatically adapts the interpo-
lation and approximation behavior depending on the redun-
dancy in the data,

• no costly aggregation of samples in a pre-processing step so
that the implicit function can, given the input samples, readily
and rapidly be evaluated, and

• an efficient and scalable method that does not require any
global operations (such as applying graph cuts or solving large
systems of equations).

In the remainder of this paper we first review related work (Sec-
tion 2). We then formally introduce our surface reconstruction ap-
proach (Section 3) and perform experiments on synthetic and real-
world data (Section 4). Next, we describe the isosurface extraction
(Section 5) and evaluate our approach (Section 6). We finally dis-
cuss the limitations of our approach (Section 7) and conclude with
an outlook on future work (Section 8).

2 Related Work

We give an overview of closely related surface reconstruction algo-
rithms with a focus on how they handle scale, whether and which
parameters they require, and to what extent they use costly global
optimizations to reconstruct the final mesh.

Volumetric Range Image Processing (VRIP) [Curless and Levoy
1996] averages surfaces (regardless of scale) in a regular grid using
a volumetric approach based on the signed distance function. Av-
eraging a high resolution and a low resolution surface yields an av-
erage surface quickly blurring the high resolution information. Our
method is similar in that it also uses the weighted average of locally
estimated functions to define the implicit surface compactly around
the input data. While VRIP’s implicit function is approximately a
signed distance function, the interpretation of our function is more
abstract and values do not represent distances. In contrast to VRIP,
(Screened) Poisson Surface Reconstruction [Kazhdan et al. 2006;
Kazhdan and Hoppe 2013] uses the density of the samples as indi-
cator for scale. Thus a denser set of samples is assumed to originate
from a surface sampled at a higher resolution. However, the sam-
pling rate is not necessarily related to the sample resolution, and an
increased sampling rate may simply be caused by data redundancy
(see Figure 2). As a consequence, Poisson Surface Reconstruction
starts fitting to the sample noise and hallucinates geometric detail.
Mesh Zippering [Turk and Levoy 1994] selects a triangulated depth
map for each surface region, eroding redundant triangles. It is worth
noting that such an approach works with meshes at pixel resolution
and is thus, at least in theory, able to select high resolution surface
parts and could avoid averaging with low resolution surfaces. In
practice Mesh Zippering is fragile and fails in the presence of noise
and outliers.

Using basis functions for surface reconstruction is a common ap-
proach, e.g., for rendering of atomic structures [Blinn 1982] or
in the area of mesh-free particle-based simulation [Yu and Turk
2013]. A scalar field is defined as the sum of radially symmetric
or anisotropic basis functions, possibly with finite support, and tri-
angulated or rendered at a fixed isovalue. Radial Basis Functions
(RBFs) have been used for surface reconstruction from (oriented)
point clouds [Turk and O’Brien 1999] but their work is limited to
small problems and closed surfaces. Another inherent difficulty lies
in defining off-surface constraints to avoid the trivial solution. Al-
though advances made RBFs much more tractable to real world data
in terms of size and handling of noise [Carr et al. 2001], RBF fitting
is global in nature and a large linear system of equations must be
solved to obtain the parameters of the basis functions. Similarly,
Calakli and Taubin [2011] present a variational approach to recon-

struct a smooth signed distance function which requires the global
solution of a linear system of equations.

A local approach is presented by Ohtake et al. [2003] who fit lo-
cal shape functions to oriented points and employ weighting func-
tions to blend together the local representations. The approach re-
quires parameters such as the support radius for fitting the local
shape functions and an error threshold that controls the refinement
of the hierarchal decomposition. All of these parameters, as well as
the choice of the local shape functions, depend on the density, re-
dundancy and noise characteristics of the input samples. Their ap-
proach is “multi-scale” in the sense that features are reconstructed
at different resolution, however, multi-scale input samples are not
considered. The method is related to ours in that it constructs the
implicit function as a weighted sum of local functions. In contrast,
their functions fit multiple points using local shape priors over an
octree hierarchy, whereas our functions are defined on a per-sample
basis. Shen et al. [2004] presents an approach based on an implicit
moving least-squares formulation. One key distinction to [Ohtake
et al. 2003] is that not only point constraints are considered when
fitting the input data: Integrated constraints are used over the poly-
gons which allows the method to either interpolate or approximate
polygonal data.

Mixed-Scale: Although there exists a wealth of surface reconstruc-
tion literature, few authors consider samples at different scales as
input. Integrating scale in the reconstruction process allows us to
identify and use redundancy to suppress noise, and to distinguish
between high and low resolution samples. Given sufficient high
resolution information, any amount of additional low resolution in-
formation should not degrade the high resolution reconstruction.

Muecke et al. [2011] splat Gaussians for every input sample into a
grid to produce a 3D confidence map. They use normalized Gaus-
sians so that every sample contributes the same confidence but, de-
pending on the scale of the sample, distribute the confidence over
differently sized regions. The final surface is extracted as the maxi-
mum confidence cut through a graph defined by the grid. The down-
side of this approach is the unsignedness of the map, and the exact
maximum of the function cannot be obtained by interpolation. The
global graph cut optimization is also a limiting factor. We draw
inspiration from this approach in that we also use basis functions
whose size change with the sample scale. In contrast, our implicit
function is signed, the zero level-set can be triangulated with sub-
voxel accuracy, and we do not require any global optimization.

Fuhrmann and Goesele [2011] present a multi-scale depth map fu-
sion method. The distance field of triangulated depth maps is ren-
dered into a hierarchical signed distance field and, in contrast to
VRIP, only surfaces at compatible scales are averaged. Low reso-
lution information is discarded in regions with sufficient high reso-
lution information. The final surface is extracted as the zero level-
set of the implicit function. Although our work is inspired by
the same basic idea of reconstructing multi-resolution data, the ap-
proaches are quite different. Where Fuhrmann and Goesele [2011]
assume triangulated depth maps with known sensor positions as in-
put, we rely on oriented, scale-enabled surface samples. Instead
of a discretized representation of the implicit function both spa-
tially and in scale, our implicit function can be evaluated anywhere
without interpolation in scale and space, solely from the input sam-
ples. Thus scale selection becomes more flexible and is not lim-
ited to neighboring octree levels. Like VRIP, Fuhrmann and Goe-
sele [2011] cannot extract surfaces in regions without data. Our
implicit function extends beyond the input samples to some degree,
which enables us to fill small holes and obtain more complete re-
constructions. Finally, our isosurface extraction does not require a
global Delaunay tetrahedralization, and is thus more efficient and
produces meshes with fewer output triangles.

3 Floating Scale Implicit Function

In this section we describe the choice of our implicit function. We
assume thatN input samples are given and equipped with a position
pi ∈ R3, a normal ni ∈ R3, ‖ni‖ = 1, and a scale value si ∈ R.
Optional attributes are the sample’s confidence ci ∈ R and a color
Ci ∈ R3. We will treat color reconstruction only as subordinate
aspect of our work.

In the first step an implicit function F (x) : R3 7→ R is defined as
the weighted sum of basis functions fi. Every sample in the input
set contributes a single basis function which is parameterized by
the sample’s position and normal, as well as its scale value. This
step does not require any preprocessing and F can readily be eval-
uated. The final surface is then given as the zero-set of F . In order
to make the approach computationally tractable, the basis function
weights wi are compactly supported such that only a small subset
of all samples need to be evaluated to reconstruct F at a position
x ∈ R3. Due to the compact support of the basis functions, the set
{x | F (x) = 0} essentially defines a surface everywhere beyond
the support of the samples. We therefore only consider the zero-
level set inside the support where the weight function W is strictly
positive, i.e.

{x | F (x) = 0 ∧W (x) > 0}. (1)

3.1 Implicit Function

Like many approaches in literature, we reconstruct a signed im-
plicit function which is positive in front of and negative behind the
surface (similar to a signed distance function). This function F is
defined as a weighted sum of basis functions:

F (x) =

∑
i ciwi(x)fi(x)∑

i ciwi(x)
W (x) =

∑
i

ciwi(x) (2)

Function fi and weight wi are parameterized by the ith sample po-
sition pi, normal ni and scale si. The optional confidence ci es-
sentially scales the weight function and can easily be omitted by
setting it uniformly to ci = 1. In the following, without loss of
generality, we define fi and wi as a one parameter family of func-
tions depending only on the scale si of the sample. The position pi
and normal ni are considered by translating and rotating the input
coordinate x

xi = Ri · (x− pi) (3)

with rotation matrix Ri = R(ni) such that x is transformed into
the local coordinate system (LCS) of sample i. The LCS is defined
such that the sample’s position is located in the origin and the nor-
mal coincides with the positive x-axis. Because the normal defines
the LCS only up to a one dimensional ambiguity it is important that
the basis and weight functions fi and wi are defined in a rotation
invariant manner, such that the reconstruction is invariant to the
choice of the LCS orthogonal to the normal. Given a rigid trans-
formation T and reconstruction operatorR acting on a point set P ,
this property ensures that T (R(P)) = R(T (P)).

3.2 Basis Function

Similar to Muecke et al. [2011], we use basis functions that, for
every sample, contribute the same “confidence”, or volume, to the
implicit function. Depending on the scale of a sample, the volume
is distributed over differently sized regions. As basis function f we
use the derivative of the Gaussian fx in the direction of the normal
with σ = si set to the scale of the sample. (We flip the sign of the
function because it is defined to be positive in front of the surface,

−3σ 0 3σ
−a

0

a

−3σ 0 3σ
0

b

−3σ 0 3σ
0

1

−3σ 0 3σ
0

1

Figure 3: The 1D components of the basis function fx, fy , and
weight function wx and wy . The peaks are a = 1/σe−0.5 and b =
1/σ
√

2π.

i.e. in the direction of the positive x-axis.) Normalized Gaussians
fy , fz are used orthogonal to the normal in y and z direction.

fx(x) =
x

σ2
e

−x2
2σ2 fy(x) = fz(x) =

1

σ
√
2π
e

−x2
2σ2 (4)

Figure 3 illustrates the function components in 1D. This yields the
basis function

f(xi) = fx(x)fy(y)fz(z) =
x

σ42π
· e

−1

2σ2
(x2+y2+z2) (5)

The function is rotation invariant around the normal because fyfz
can be rewritten in terms of the distance

√
y2 + z2 to the normal.

The integral of the function’s absolute value is 1 and thus every
basis function contributes the same volume to the implicit function:

∫∫∫
|f(xi)|dxi =

∫
|fx(x)|dx

∫
fy(y)dy

∫
fz(z)dz = 1

(6)

Since fy and fz are normalized Gaussians, their integrals are 1
by definition. We integrate the absolute function |fx| because the
point-symmetric parts cancel each other out. |fx| does not require
explicit normalization and

∫
|fx| = 1. Figure 4 (left) illustrates the

function in 2D.

3.3 Weighting Function

In the following we design a polynomial weighting function w that
has compact support, falls smoothly off to zero and gives more
weight to the regions in front of the surface. The justification behind
this is related to free space constraints and occlusions as discussed
by Curless and Levoy [1996] and Vrubel et al. [2009]: If a sample
has been observed, the existence of a surface between the observer
and the sample is not possible. Behind the sample, however, we
cannot be sure of the existence of a surface and want to reduce
the weight quickly. We observe that f(xi) has negligible influence
beyond 3σ, and thus we chose 3σ as the point beyond which the
weighting function vanishes. The weighting function

w(xi) = wx(x) · wyz(
√
y2 + z2) (7)

is composed of a non-symmetric component in x-direction

wx(x) =

1
9
x2

σ2 + 2
3
x
σ
+ 1 x ∈ [−3σ, 0)

2
27

x3

σ3 − 1
3
x2

σ2 + 1 x ∈ [0, 3σ)

0 otherwise
(8)

and a rotation invariant component in y- and z-direction

wyz(r) =

{
2
27

r3

σ3 − 1
3
r2

σ2 + 1 r < 3σ

0 otherwise
(9)

r =
√
y2 + z2. (10)

Figure 4: The basis and weighting functions in 2D in the inter-
val [−3σ, 3σ]2. Left: f(x, y) = fx(x)fy(y). Right: w(x, y) =
wx(x)wy(y).

Note that the function wyz is the positive domain of wx where x
is replaced with the distance to the normal r. The individual 1D
components of the weighting function are illustrated in Figure 3,
and a 2D illustration is shown in Figure 4 (right).

4 Analysis in 2D

There are many possible choices for both basis and weighting func-
tion. We chose the Gaussian family of functions as basis function
which empirically provides excellent approximation and extrapo-
lation behavior. We will now demonstrate these properties of the
implicit function on simple synthetic 2D datasets as well as real
world data. In Section 6 we discuss alternative choices for both the
basis function and weighting function.

We visualize the implicit function using a color mapping where pos-
itive values are colored green and negative values are blue. Bright
colors correspond to small values of F (near and also far from the
isosurface) and darker colors to large values, such that the isosur-
face is directly visible in the images. A gray color is used outside
of the support, where W is zero. Samples are indicated in red.

4.1 Synthetic Data

When designing a reconstruction algorithm, we are concerned with
the interpolation, extrapolation and approximation characteristics
of the reconstruction operator. On the one hand the isosurface
should pass through the input samples, in particular if the points
are sparse and accurate. The implicit function should gracefully fill
the gaps between the samples using smooth extrapolation. On the
other hand, if many redundant and noisy point samples are avail-
able, it should approximate the samples and average out the noise
instead of over-fitting the data. The presented formulation of the
implicit function automatically adapts to the data as demonstrated
by the following 2D experiments.

We provide 2D point samples (of a curve) with normals. In the first
experiment the scale is computed for each sample as the average
distance to the two nearest neighbors of the sample. We then mul-
tiply the computed scale with several factors, see Figure 5. With a
small factor, the function interpolates the samples but extrapolation
becomes less smooth. With an increasing factor, the reconstruction
will approximate the points and provide a smoother extrapolation,
but a less accurate interpolation.

In Figure 6 we consider the sampling of a function with added noise
to positions and normals. The noise is uniform and about 5% of the
bounding box of the samples. As we increase redundancy (adding
more noisy samples while keeping the scale of the samples con-
stant), the technique starts to increasingly approximate the data,
reducing the noise, until the reconstruction converges towards the
original function.

Figure 5: Reconstructions with increasing scale factor. The larger
the factor the more approximative is the reconstruction. Scale fac-
tors are 0.5 (left), 1.0 (middle) and 2.0 (right).

Figure 6: Reconstructions with increasing redundancy converging
towards the original function. The left image shows the original
function and 150 noisy samples. The reconstructions have been
computed from 50, 500 and 5000 noisy samples, respectively.

4.2 Real-World Data

In practical cases the noise characteristics of the input data change
considerably depending on how the samples have been acquired.
Our intention is to demonstrate the ability of our reconstruction op-
erator to handle both clean and extremely noisy datasets without
tuning any parameters (such as noise characteristics or the octree
level).

In the following experiments we use the Stanford Bunny and the
Middlebury Temple dataset (see Section 6 for details how these
datasets were created). For each dataset, we intersect the set of
samples with a plane and select only samples whose distance to
the plane is below a threshold. This yields 2D datasets with 2690
samples for the Bunny, and 157275 samples for the Temple, see
Figure 7. While the Stanford Bunny contains clean, range scanned
samples, the Middlebury Temple is a very noisy multi-view stereo
(MVS) reconstruction with many outliers. The presence of isolated
outliers as well as noise in both normals and sample positions lead
to many isovalue crossings further away from the true surface. The
weighting function, however, indicates which parts of the implicit
function are important. In practice, only isosurfaces above a certain
weight are extracted, which removes spurious isolated components.
Note that this weight threshold is not a parameter to our reconstruc-
tion operator. In fact, we postpose cleaning the geometry until after
the surface mesh has been extracted.

5 Sampling the Implicit Function

In this section we detail how the implicit function F is efficiently
evaluated to extract the isosurface F (x) = 0. All input samples are
first inserted into an octree data structure according to their scale
value. The resulting octree hierarchy prescribes a sampling of F
by considering the positions in the corners of the octree leaf nodes.
The implicit function is then evaluated at these positions. We call
these sample positions voxels to distinguish from the input sample
points. Finally, the isosurface is extracted from the octree using a
variant of the Marching Cubes algorithm.

Figure 7: Reconstruction with real world data. Top row: Slice of
the Stanford Bunny. Bottom row: Slice of the Middleburry Temple.
Illustration of the slice and the 2D input point set (left), normalized
implicit function (middle) and the weighted implicit function (right).

5.1 Octree Generation

In order to avoid aliasing when sampling the implicit function or
evaluating the function too far from the isosurface, we set bounds
on the voxel spacing according to the samples’ scale values. Re-
call that sample i has scale value si and the radius of the sample’s
support is 3si. We impose

S` ≤ si < S`−1 ⇔ S` ≤ si < 2S` (11)

where ` is the octree level at which the sample will be inserted,
and S` is the side length of an octree node at level ` (i.e., the voxel
spacing). This forces a sample to be inserted into an octree node
with a side length S` of at most si but usually smaller:

1/2 si < S` ≤ si. (12)

We start with an empty octree without nodes. The first sample i is
inserted in a newly created root node with a side length of si and
centered around the sample’s position pi. When inserting subse-
quent samples, three cases can occur:

1. The new sample is outside the octree. In this case the octree
is iteratively expanded in the direction of the new sample un-
til the new sample is inside the octree. The sample is then
inserted using cases 2 or 3.

2. The new sample’s scale is larger than the scale of the root
node. Again, octree expansion is used to create new, larger
root nodes until the root has a scale according to (12).

3. The new sample’s scale is smaller than the scale of the root
node. In this case the tree is traversed, possibly creating new
nodes, until a node with a scale according to (12) is reached.

Once a node is determined, the sample is inserted into that node.

5.2 Evaluating the Implicit Function

After inserting all samples in the octree, the octree is prepared for
evaluation of the implicit function. We enforce that nodes can be
classified into either inner nodes or leafs. Inner nodes have all eight
children allocated, and leafs have no children allocated. The current
octree, however, has mixed nodes where only some of the children
are allocated. We make the octree regular by allocating the remain-
ing unallocated children of nodes which are not leafs. This creates
new leafs and eliminates mixed nodes.

Figure 8: Synthetic experiment: The top row shows the high reso-
lution (HR) surface (left) and a low-pass filtered version of the high
resolution (LR) surface (right). The bottom row shows the result of
mixing 100 HR samples with 1000 LR samples (left) and mixing 100
HR samples with 10000 LR samples (right), causing the isosurface
to degrade towards the low-pass filtered geometry.

A list of voxels (points at which the implicit function is evaluated)
is created by iterating all leaf nodes. Each leaf node generates eight
voxels in the corners of the node. This is a primal sampling as
opposed to a dual sampling where voxels are positioned in the cen-
ter of the node. Since neighboring leaf nodes share common voxels,
every voxel is identified with a unique ID and inserted into a unique
set. The implicit function is then evaluated at the voxel positions.

In order to evaluate the implicit function at position x, we design an
efficient query on the octree that selects only samples which influ-
ence the implicit function at x: The octree is recursively traversed
and for every node a check is performed if the node can possibly
contain a sample which influences x. From Equation (11) we know
that node N contains samples with a scale of at most 2SN , where
SN is the side-length of N . Thus, x cannot be influenced by any
sample in N if

‖x− center(N)‖ −
√
3
SN
2

> 3 · 2SN . (13)

The left side of the inequality is the worst case (smallest) distance
from x to any point in the node, and the right side is the largest
possible influence radius of a sample in N , i.e. 3 times the largest
sample scale 2SN . If the inequality holds, the node can be skipped
without descending into child nodes. Otherwise, all samples i in the
node are considered if ‖x−pi‖ < 3si. The implicit function F (x)
can then be evaluated according to Equation (2) using all selected
samples that influence x.

Scale Selection: Limiting the number of samples for evaluating
the implicit function will have two effects: It speeds up the algo-
rithm, but more importantly, it can actually improve the quality of
the reconstruction. On the one hand, the error to the ground truth
geometry is decreased by exploiting redundancy to account for the
sample noise. On the other hand, the surface error is increased by
mixing samples with different scales: As the formation of a sam-
ple usually happens through some kind of integration process over
a surface area, every sample corresponds to a low-pass filtered ver-
sion of the original surface depending on the scale of the sample
[Klowsky et al. 2012]. Mixing high and low resolution samples will
thus have the effect of degrading the isosurface towards a low-pass
filtered geometry. This is demonstrated with the synthetic experi-
ment in Figure 8 (see also the supplemental material).

Our approach to this problem is based on the idea of balancing the
positive effect of redundancy (Figure 6) with the negative effect
of mixing high and low resolution samples (Figure 8). These two
properties are orthogonal to each other: Noise reduction improves
precision along the surface normal whereas low resolution samples
have an impact along the tangent of the surface. Making a trade-
off between the two is not straightforward. Fuhrmann and Goesele

Figure 9: Two types of degenerated triangles, caps and needles
(left). The mesh cleanup procedure (right) with the initial mesh,
needles cleanup, caps cleanup, and another needles cleanup. The
edges to be collapsed are shown in red.

[2011] discard low resolution samples by locally selecting the high-
est supported resolution from the discretized scale-space represen-
tation. Similarly, we also discard low resolution samples. We do,
however, not discretize scale and can therefore choose a continuous
cut-off scale using the following heuristic.

To evaluate the implicit function at voxel x, consider the set of
samples whose (compact) support overlaps with x. We now deter-
mine a cut-off scale value smax and only consider samples i with
si < smax to reconstruct the implicit function at x. Conceptually,
we define smax = sx · fnoise, where sx is a reference scale and
fnoise can be chosen according to the noise properties of the data.
In our implementation, the reference scale sx is chosen as a ro-
bust 10th percentile of those scale values affecting x. (Finding the
nth percentile is a linear operation and does not require sorting all
samples.) We set fnoise = 2 in all of our experiments.

5.3 Isosurface Extraction

At this point, the samples are no longer required and the isosurface
can be extracted from the implicit function defined at the octree
voxels. This is, however, more complicated than with a regular
grid. In the regular case, each cube can be processed individually
using Marching Cubes [Lorensen and Cline 1987] and the result
is guaranteed to be watertight. In the case of an octree, however,
different decisions are made on either side of a cube face (because
of depth disparity in the octree), which leaves cracks in the surface.
We use the isosurface extraction algorithm proposed by Kazhdan
et al. [2007] which yields a crack-free and highly adaptive mesh
directly from the octree hierarchy.

The resulting surface contains many degenerated triangles, which
is typical for Marching Cubes-like algorithms. To obtain a well-
behaved mesh we apply a simple cleanup procedure, see Figure 9.
We first identify needle triangles, which are erased by collapsing the
short edge. A check that the normals of adjacent triangles do not
change too much prevents topological artifacts. Afterwards cap tri-
angles are removed by collapsing vertices with only three adjacent
faces. A final pass of needle removal is performed as new needles
may be created by the previous operation. This simple procedure
usually reduces the number of triangles in the mesh by about 40%.

5.4 Color Reconstruction

We use a simple approach to evaluate a second implicit function
that yields a color value for every position x. The implicit function
has form (2) but uses simpler basis functions. fi is replaced with
the constant sample color Ci and the weight functionwi is replaced
with a narrow 3D Gaussian with σ = 1/5 · si. Here, σ is chosen
so small to avoid blurring the color and to obtain a crisp texture.
Although this weighting function does not have compact support,
the weight evaluated at ±3si away from the sample is in the order
of 10−10 and thus negligible.

6 Results

We perform a thorough evaluation of our approach on three types of
datasets. In Section 6.1 we compare our results on controlled data
with Mesh Zippering [Turk and Levoy 1994] and VRIP [Curless
and Levoy 1996]. We use the Middlebury benchmark in Section
6.2 to rank our reconstruction on multi-view stereo data. Finally, in
Section 6.3, we show the performance of our algorithm on mixed-
scale data. For all datasets we also compare with the quasi-standard
reconstruction algorithm, (Screened) Poisson Surface Reconstruc-
tion (PSR) [Kazhdan and Hoppe 2013]. Instead of comparing to
an exhaustive number of algorithms, we limit ourselves to PSR as
one representative algorithm that uses point density to estimate per-
sample scale in the reconstruction process. Extensive comparison
of PSR with other algorithms has been performed by Kazhdan and
Hoppe [2013].

6.1 Range Scanner Data

The availability of both range data and final reconstructions in the
Stanford Scanning Repository [2013] allow us to qualitatively com-
pare our reconstructions with those from the website performed
with Mesh Zippering [Turk and Levoy 1994] and VRIP [Curless
and Levoy 1996]. We obtained the input point sets to our system by
aligning the range data using transformations provided by the Stan-
ford Scanning Repository. This yields one mesh per range scan in
the global coordinate system. Normals are computed for every ver-
tex from the adjacent triangles. The per-vertex scale value is set to
the average length of all edges emanating from the vertex. Connec-
tivity information of the range scans is discarded afterwards.

Stanford Models: Figure 10 compares several reconstructions
from the Stanford Scanning Repository [2013] with our own recon-
structions. The Stanford Bunny dataset contains 10 range scans,
the Dragon 71 and the Armadillo a total of 97 range scans. Our
algorithm is able to make use of the redundancy in the data without
blurring the result, which reveals details unavailable in the Mesh
Zippering and VRIP reconstructions. The surfaces created with
PSR look visually very close to our reconstruction, so we omit a
visual comparison here. Instead, we provide a quantitative evalua-
tion in Table 1. For this evaluation we split the input point set and
use 90% of the samples for reconstruction, and the remaining 10%
of the samples to evaluate the RMS error and mean distance to the
reconstructed surface. Our method shows performance on par with
PSR on these datasets.

Error comparison on Stanford Datasets
Bunny Dragon Armadillo

RMS (PSR) 1.419789 2.950294 5.527238
RMS (ours) 1.394920 2.930433 5.439365

Mean (PSR) 0.970039 1.560911 1.706402
Mean (ours) 0.911296 1.512578 1.676785

Table 1: Quantitative evaluation on Stanford datasets. 90% of the
samples are used for reconstruction, the remaining 10% for evalu-
ating the mean and RMS distance to the reconstructed surface. The
measurements are in units of 10−4.

Incomplete Data: We now demonstrate the behavior of our method
on data with holes and boundaries. Due to the local nature of the
basis functions, the implicit function is undefined beyond the sup-
port of the samples. Although the implicit function is able to close
small gaps in the sampling of the surface, it does not close larger
holes. Figure 11 illustrates this behavior on a single range scan of
the Stanford Bunny.

Figure 10: Reconstruction of the Stanford models. The top row
shows the Bunny reconstruction using Mesh Zippering [Turk and
Levoy 1994] (left) and our reconstruction (right). The middle
and bottom row show the Dragon and Armadillo reconstructed
with VRIP [Curless and Levoy 1996] (left) and with our algorithm
(right). Our algorithm reveals more detail on all models.

Michelangelo’s David: To showcase the scalability of our ap-
proach, we reconstruct the Michelangelo’s David provided by the
Stanford 3D Scanning Repository, see Figure 12. The dataset is a
VRIP reconstruction of non-rigidly aligned range scans and con-
tains a total of 472 million input samples. Although our reconstruc-
tion required a considerable amount of memory (114 GB RAM)
and processing time (4 hours on a machine with 8 AMD Opteron
Quad-Core processors), we were not able to process the data with
PSR within a memory limit of 250 GB at any octree level larger
than 11. We succeeded in running Streaming PSR [Bolitho et al.
2007] at a level of 14, which took about a day, but still resulted in a
very low resolution output mesh.

6.2 Multi-View Stereo Data

Next, we evaluate our approach on multi-view stereo (MVS) data.
We produce the input samples to our algorithm in the following
way: A depth map is computed for every input image using the
freely available MVS implementation of Goesele et al. [2007]. Sim-
ilar to the range scanner data, scale is computed for every vertex

Figure 11: Reconstruction behavior with incomplete data. The in-
put point set from a single range image (left) and our reconstruction
leaving holes in regions with insufficient sampling (right).

Figure 12: Reconstruction of Michelangelo’s David from 472M
input samples. The dataset is kindly provided by the Stanford 3D
Scanning Repository.

in the triangulated depth maps as the average length of all edges
emanating from that vertex. But in contrast to the scanner data,
every pixel in the depth map actually corresponds a surface region
larger than the pixel: Every depth value is the result of a photo-
consistency optimization on patches of a certain extent, which has
a (low-pass) filtering effect on the reconstructed surface [Klowsky
et al. 2012]. We used a patch size of 5x5 pixels and, empirically,
found that multiplying the scale with 2.5 (i.e. the “radius” of the
patch) yields good results. Finally, the union of all vertices from all
depth maps is used as the input point set.

The Temple Full dataset from the Middlebury benchmark [Seitz
et al. 2006] contains 312 images. All MVS depth maps yield a
total of 23 million input samples. Our reconstruction is available
as Fuhrmann-SG14 on the Middlebury evaluation page for quan-
titative comparison. (Note that the final geometry does not only

Figure 13: Reconstruction of the Middlebury Temple. The Poisson
Surface Reconstruction (left), our colored reconstruction (middle)
and shaded reconstruction (right).

depend on our reconstruction technique, but also on the MVS algo-
rithm). We visually compare our result with PSR at an octree depth
of 10 in Figure 13. The PSR reconstruction looks slightly sharper
around the edges but also has some geometric artifacts. In contrast
to PSR, our algorithm does not require any parameter tuning.

6.3 Multi-Scale MVS Data

Our algorithm gracefully handles both clean and uniform scale
datasets, but excels in handling multi-resolution datasets. In the fol-
lowing we perform an evaluation on a multi-scale multi-view stereo
dataset where images are taken at various distances to the subject.
This yields depth maps with vastly different sampling rates of the
surface. In contrast to algorithms using point density, our algorithm
produces sharp geometry even in the presence of many low resolu-
tion samples, and smooth results in low resolution regions. We use
PSR as representative algorithm to demonstrate the shortcomings
of traditional methods on multi-scale data. We then compare our
results with other multi-scale approaches.

We first register the input images using a Structure-from-Motion
software. Similar to the Temple Full dataset, we reconstruct dense
depth maps using the MVS implementation by Goesele et al. [2007]
and use the samples of all depth maps as the input to our algorithm.
(More comparisons can be found in the supplemental material that
accompanies the paper.)

Elisabeth Dataset: Due to technical limitations (memory con-
sumption and processing time) with PSR, we prepared a smaller
dataset called Elisabeth to perform the comparison. The dataset
contains high resolution regions with detailed carvings and reliefs,
as well as regions captured at a much lower resolution, see Fig-
ure 14. Although PSR at level 9 produces a smooth result in the
low resolution region, it cannot reconstruct the high resolution de-
tails. PSR at level 11 reconstructs the fine details but produces a
poor result in low resolution regions: It cannot reliably detect re-
dundancy and, due to the too large octree level, reconstructs the
noise in the data. A visual comparison of the reconstruction can be
found in Figure 15.

Fountain Dataset: We now compare our algorithm on an MVS
dataset with a much larger extent. We captured 384 photos of an old
fountain yielding a total of 196 million input samples (about half the
size of the David dataset). While most of the scene is captured in
lower resolution, one of the two lion heads is captured with many
close-up photos. Figure 16 shows some input images as well as
an overview of the whole reconstruction spanning more than two
orders of magnitude differences in scale. Figure 17 shows some
geometric details on the fountain.

Figure 14: Multi-scale reconstruction of the Elisabeth dataset. The
top row shows our reconstruction with color (left), with shading
(middle) and with false coloring of the scale (right). The bottom
row shows 5 of 205 input images with varying scale.

Figure 15: Comparison with PSR on the Elisabeth dataset. Top
row: Reconstruction with PSR at level 11, which reconstructs de-
tails (left) but produces noise in low resolution regions (right). Mid-
dle row: PSR at level 9 smoothly reconstructs low resolution re-
gions but fails on the details. Bottom row: Our method reproduces
both high- and low resolution regions appropriately.

We compare our reconstruction with two other mixed-scale ap-
proaches, namely the work by Muecke et al. [2011] (SurfMRS)
and Fuhrmann and Goesele [2011] (DMFusion) in Figure 18. Due
to excessive use of memory with SurfMRS on the full point set, we
cropped and reconstructed only the detailed region around the foun-
tain for the comparison. Many details are lost in the SurfMRS re-
construction because the graph cut optimization often cuts through
details, such as the teeth and the spout at the mouth. While DM-
Fusion leaves small holes in the surface, our algorithm is able to
deliver a watertight result. Although all algorithms managed to
properly distinguish between low and high resolution regions, our
algorithm achieves a more detailed yet smoother reconstruction.

6.4 Alternative Basis and Weighting Functions

In the following we present alternative basis and the weighting
functions. In particular, we replace our basis function with signed
distance ramps similar to VRIP [Curless and Levoy 1996], and we
evaluate the radially symmetric B-spline used in the work of Ohtake
et al. [2003] as weighting function.

Figure 16: The Fountain dataset. The top row shows the full col-
ored reconstruction of the site. The bottom row shows 4 of 384 input
images depicting the whole site, the fountain and two details on the
fountain.

Figure 17: Details in the Fountain dataset.

Basis Function: An approximate signed distance function for sam-
ple pi with surface normal ni is given by

fi(x) = 〈x− pi | ni〉. (14)

Because this function does not attenuate orthogonal to the surface
normal, it results in a smoother implicit function but less accurate
sample interpolation. The integral of the function is unbounded
with a constant slope in the direction of the normal, which results
in large values if evaluated far away from the surface. This aspect
makes the function less useful in multi-scale scenarious because
low-resolution samples tend to dominate the implicit function and
degrade geometric details. This is demonstrated in Figure 19, which
shows a high-resolution region of a large multi-scale dataset.

Weighting Function: While we advocate the use of a weight-
ing function with non-symmetric behavior in the direction of the

Figure 18: Comparison of details in the Fountain dataset using
SurfMRS (left), DMFusion (middle) and our result (right).

normal, simpler choices are possible. Ohtake et al. [2003] use
the compactly supported, radially symmetric, quadratic B-spline
B(3

2
‖xi‖
3σ

+1.5) with radius 3σ and centered around the origin. For
most datasets this weighting function produces very comparable re-
sults. However, similar to Vrubel et al. [2009], the non-symmetric
weighting function supresses more artifacts caused by noise and
outliers, as demonstrated on the Temple dataset in Figure 20.

6.5 Runtime Performance

In this section we report runtime and memory performance of our
system. Table 2 lists datasets with the number of input samples,
and the time required for the reconstruction. The reconstruction
time is split into sampling the implicit function, which consumes
most of the time, and isosurface extraction. We also report the peak
memory usage of the system, which is measured as the maximum
resident memory size of the process. All benchmarks are performed
on a Intel Xeon Dual CPU system with 6×2.53GHz cores per CPU.
The reported wall time for evaluating the implicit function uses all
cores. Isosurface extraction, however, is limited to a single core.

Dataset Number Recon. Peak Output
Name of Samples Time Memory Vertices

Bunny 362 K 30s + 9s 320 MB 277 K
Dragon 2.3 M 83s + 17s 603 MB 455 K
Armadillo 2.4 M 63s + 13s 553 MB 293 K
David 472 M 247m + 38m 114 GB 81.9 M
Temple 22.8 M 5m + 5s 1.96 GB 176 K
Elisabeth 39.3 M 19m + 1m 4.39 GB 2.3 M
Fountain 196 M 178m + 6m 19.9 GB 10.2 M

Table 2: Runtime performance for various datasets. The timings
are broken down into implicit function evaluation and surface ex-
traction. The peak memory is measured as the maximum resident
memory size of the process.

Figure 19: Comparison of reconstructions using signed distance
ramps (left) and our basis function using Gaussians (right). The
distance ramps are particularly harmful in mixed-scale datasets.

Figure 20: Reconstruction using the radially symmetric B-Spline
weighting function (left) and our non-symmetric weighting function
(right). Our weighting function produces less artifacts caused by
noise and outliers in the input data.

7 Discussion

Our approach requires normals and scale information for every in-
put sample. Several approaches for estimating normals have been
proposed, e.g. by Hoppe et al. [1992] and Dey et al. [2005]. Scale
values, however, cannot reliably be inferred without information
about the formation of the samples. In the special (but unlikely)
case, where the sample density is globally related to the scale of
samples (which is assumed in many methods), the scale values can
be computed from the sample spacing, for example using the aver-
age distance to the k nearest neighbors. If this is not the case, the
estimation of scale will fail, and surface reconstruction can produce
undesirable results. In particular, the algorithm looses the ability to
exploit redundancy for noise reduction and thus reconstructs high
frequency noise, as demonstrated in Figure 2.

Although our implementation scales well to huge datasets and the
runtime performance is competitive with state-of-the-art methods,
sampling the implicit function is a time-consuming step because
the Gaussians which we use as basis functions are expensive to
evaluate. Even though increasing redundancy does not consider-
ably increase memory consumption, it does increase computation
time. The reason is that for every sampling point x, more samples
influence x and more basis functions need to be evaluated.

Due to the local nature of our algorithm, the implicit function is
not defined beyond the support of the samples. Although our ap-
proach is able to close small gaps in the surface sampling, it cannot
close larger holes and leaves these regions empty. This is suitable
for open scenes or geometric objects which are only partially cap-
tured. On the other hand, this behavior stands in contrast to many
global approaches which perform excellent hole-filling but often
hallucinate low resolution geometry in incomplete regions, requir-
ing manual intervention.

8 Conclusion

We presented a point-based surface reconstruction method that
considers the scale of every sample and enables an essentially
parameter-free algorithm. It can handle both very redundant and
noisy as well as controlled datasets without any parameter tuning.
This flexibility comes at the price of providing a scale value for
every input sample, which is typically easily obtained. The method
has been shown to compute highly detailed geometry, gracefully de-
grades given imperfect input data such as noisy points and normals,
outliers, large holes or varying point density. The mathematical
concept behind the approach is very simple and will likely inspire
more research in this direction. For example, studying the impact
of various basis functions on the reconstruction properties can lead
to new reconstruction operators.

We believe that the approach is particularly well suited for out-of-
core implementation and distributed reconstruction because of the
local nature of our formulation. We would like to investigate this
direction in future work. This opens the door for high-quality city-
scale surface reconstruction projects, impossible with current state-
of-the-art approaches.

Acknowledgements

Part of the research leading to these results has received funding
from the FP7 Framework Programme under grant agreements ICT-
323567 (HARVEST4D), ICT-611089 (CR-PLAY) and the DFG
Emmy Noether fellowship GO 1752/3-1.

References

BLINN, J. F. 1982. A Generalization of Algebraic Surface Draw-
ing. ACM Transactions on Graphics 1, 3, 235–256.

BOLITHO, M., KAZHDAN, M., BURNS, R., AND HOPPE, H.
2007. Multilevel Streaming for Out-of-core Surface Reconstruc-
tion. In Proc. SGP, 69–78.

CALAKLI, F., AND TAUBIN, G. 2011. SSD: Smooth Signed Dis-
tance Surface Reconstruction. Computer Graphics Forum 30, 7,
1993–2002.

CARR, J., BEATSON, R., CHERRIE, J., MITCHELL, T., FRIGHT,
W., AND MCCALLUM, B. 2001. Reconstruction and Repre-
sentation of 3D Objects with Radial Basis Functions. In Proc.
SIGGRAPH, 67–76.

CURLESS, B., AND LEVOY, M. 1996. A Volumetric Method for
Building Complex Models from Range Images. In Proc. SIG-
GRAPH, 303–312.

DEY, T. K., LI, G., AND SUN, J. 2005. Normal Estimation for
Point Clouds: A Comparison Study for a Voronoi Based Method.
In Eurographics Symposium on Point-Based Graphics, 39–46.

FUHRMANN, S., AND GOESELE, M. 2011. Fusion of Depth Maps
with Multiple Scales. In Proc. SIGGRAPH Asia, 148:1 – 148:8.

GOESELE, M., SNAVELY, N., CURLESS, B., HOPPE, H., AND
SEITZ, S. M. 2007. Multi-View Stereo for Community Photo
Collections. In Proc. ICCV.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface Reconstruction from Unorganized
Points. In Proc. SIGGRAPH, 71–78.

KAZHDAN, M., AND HOPPE, H. 2013. Screened Poisson Surface
Reconstruction. ACM Transactions on Graphics 32, 3, 29.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
Surface Reconstruction. In Proc. SGP, 61–70.

KAZHDAN, M., KLEIN, A., DALAL, K., AND HOPPE, H. 2007.
Unconstrained Isosurface Extraction on Arbitrary Octrees. In
Proc. SGP.

KLOWSKY, R., KUIJPER, A., AND GOESELE, M. 2012. Modula-
tion Transfer Function of Patch-based Stereo Systems. In Proc.
CVPR.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000.
The Digital Michelangelo Project: 3D Scanning of Large Stat-
ues. In Proc. SIGGRAPH, 131–144.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching Cubes:
A High Resolution 3D Surface Construction Algorithm. Proc.
SIGGRAPH 21, 5, 79–86.

MUECKE, P., KLOWSKY, R., AND GOESELE, M. 2011. Surface
Reconstruction from Multi-Resolution Sample Points. In Proc.
of Vision, Modeling, and Visualization, 398 – 418.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-level partition of unity implicits. In
Proc. SIGGRAPH, 463–470.

SEITZ, S. M., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND
SZELISKI, R. 2006. A Comparison and Evaluation of Multi-
View Stereo Reconstruction Algorithms. In Proc. CVPR, 519–
528.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. In-
terpolating and Approximating Implicit Surfaces from Polygon
Soup. In Proc. SIGGRAPH, 896 – 904.

STANFORD SCANNING REPOSITORY, 2013. http://
graphics.stanford.edu/data/3Dscanrep/.

TURK, G., AND LEVOY, M. 1994. Zippered Polygon Meshes from
Range Images. In Proc. SIGGRAPH, 311–318.

TURK, G., AND O’BRIEN, J. F. 1999. Variational Implicit Sur-
faces. Tech. rep., Georgia Institute of Technology.

VRUBEL, A., BELLON, O., AND SILVA, L. 2009. A 3D Recon-
struction Pipeline for Digital Preservation of Natural and Cul-
tural Assets. In Proc. CVPR.

YU, J., AND TURK, G. 2013. Reconstructing Surfaces of Particle-
Based Fluids using Anisotropic Kernels. ACM Transactions on
Graphics 32, 1, 5:1–5:12.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

